Weakly Perturbed Fredholm Integral Equations with Degenerate Kernels in Banach Spaces

被引:0
作者
Zhuravlev V.F. [1 ]
Fomin N.P. [1 ]
机构
[1] Zhytomyr National Agricultural-Economic University, Staryi Bulv., 7, Zhytomyr
关键词
D O I
10.1007/s10958-018-3687-2
中图分类号
学科分类号
摘要
We consider weakly perturbed Fredholm equations with degenerate kernels in Banach spaces and establish conditions for ε = 0 to be a bifurcation point for the solutions of weakly perturbed operator equations X in Banach spaces. A convergent iterative scheme for finding solutions in the form of series Σi=−1+∞εizi(t) in powers of ε is proposed. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:425 / 438
页数:13
相关论文
共 50 条
[41]   An efficient multi projection methods for systems of Fredholm integral equations with mixed weakly singular kernels: A superconvergence approach [J].
Malav, Krishna Murari ;
Kant, Kapil ;
Dhar, Joydip ;
Chakraborty, Samiran .
APPLIED NUMERICAL MATHEMATICS, 2025, 217 :172-189
[42]   AN ALGORITHM FOR SOLVING FREDHOLM INTEGRAL-EQUATIONS WITH DISPLACEMENT KERNELS [J].
ALLEN, RC ;
BOICOURT, GP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :245-260
[43]   CONVEXITY CONDITIONS FOR KERNELS AND EIGENVALUES OF A CLASS OF FREDHOLM INTEGRAL EQUATIONS [J].
BOLAND, WR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 28 (03) :609-&
[44]   SOLUTION OF LINEAR FREDHOLM INTEGRAL-EQUATIONS WITH GREEN KERNELS [J].
MICKE, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (01) :37-48
[45]   The Approximate Solution of Fredholm Integral Equations with Oscillatory Trigonometric Kernels [J].
Wu, Qinghua .
JOURNAL OF APPLIED MATHEMATICS, 2014,
[46]   Approximation of smooth solutions to integral equations with degenerate kernels [J].
A. A. Khromov .
Computational Mathematics and Mathematical Physics, 2009, 49 :2059-2069
[47]   Approach to the Solution of Volterra Integral Equations with Degenerate Kernels [J].
Zhegalov, V. I. ;
Sarvarova, I. M. .
RUSSIAN MATHEMATICS, 2011, 55 (07) :23-29
[48]   Approximation of smooth solutions to integral equations with degenerate kernels [J].
Khromov, A. A. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (12) :2059-2069
[49]   Discrete superconvergent degenerate kernel method for Fredholm integral equations [J].
Allouch, C. ;
Boujraf, A. ;
Tahrichi, M. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 164 :24-32
[50]   Fredholm partial integral equations of second type with degenerate kernel [J].
Kucharov, Ramziddin ;
Eshkabilov, Yusup .
ALGEBRA, ANALYSIS AND QUANTUM PROBABILITY, 2016, 697