The nonlinear Schrödinger equation on the half-line with a Robin boundary condition

被引:0
作者
A. Alexandrou Himonas
Dionyssios Mantzavinos
机构
[1] University of Notre Dame,Department of Mathematics
[2] University of Kansas,Department of Mathematics
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
nonlinear Schrödinger equation; Initial-boundary value problem; Robin boundary condition; Well-posedness in Sobolev spaces; Unified transform method of Fokas; Linear space-time estimates; -boundedness of Laplace transform; Primary: 35Q55; 35G31; 35G16;
D O I
暂无
中图分类号
学科分类号
摘要
The initial-boundary value problem for the nonlinear Schrödinger equation on the half-line with initial data in Sobolev spaces Hs(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s(0, \infty )$$\end{document}, 1/2<s⩽5/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/2< s\leqslant 5/2$$\end{document}, s≠3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ne 3/2$$\end{document}, and Robin boundary data of appropriate regularity is shown to be locally well-posed in the sense of Hadamard. The proof is through a contraction mapping argument and hence relies crucially on certain estimates for the forced linear counterpart of the nonlinear problem. In particular, the essence of the analysis lies in the pure linear initial-boundary value problem, which corresponds to the case of zero forcing, zero initial data, and nonzero boundary data. This problem, which is studied by taking advantage of the solution formula derived via the unified transform of Fokas, holds an instrumental role in the overall analysis as it reveals the correct function space for the Robin boundary data.
引用
收藏
相关论文
共 86 条
[1]  
Benney D(1969)Wave instabilities Stud. Appl. Math. 48 110-66
[2]  
Roskes G(2018)Nonhomogeneous boundary value problems of one-dimensional nonlinear Schrödinger equations J. Math. Pures Appl. 109 1-156
[3]  
Bona J(1993)Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations Geom. Funct. Anal. 3 107-836
[4]  
Sun S(1990)The Cauchy problem for the critical nonlinear Schrödinger equation in Nonlinear Anal. 14 807-2266
[5]  
Zhang B-Y(2011)Rogue wave observation in a water wave tank Phys. Rev. Lett. 106 204502-810
[6]  
Bourgain J(2002)The generalized Korteweg-de Vries equation on the half-line Commun. Partial Differ. Equ. 27 2187-522
[7]  
Cazenave T(1989)Local smoothing properties of Schrödinger equations Indiana U. Math. J. 38 781-509
[8]  
Weissler F(1992)Nonlinear modulation of gravity waves: a rigorous approach Nonlinearity 5 497-186
[9]  
Chabchoub J(2016)The linear KdV equation with an interface Commun. Math. Phys. 347 489-5624
[10]  
Hoffmann N(2014)The method of Fokas for solving linear partial differential equations SIAM Rev. 56 159-2568