Rigorous Asymptotic Expansions for Critical Wave Speeds in a Family of Scalar Reaction-Diffusion Equations

被引:0
作者
Nikola Popović
Tasso J. Kaper
机构
[1] Boston University,Center for BioDynamics and Department of Mathematics and Statistics
来源
Journal of Dynamics and Differential Equations | 2006年 / 18卷
关键词
Reaction-diffusion equations; FKPP equation; traveling waves; critical wave speeds; geometric desingularization; blow-up technique; 35K57; 34E15; 34E05;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate traveling wave solutions in a family of reaction-diffusion equations which includes the Fisher–Kolmogorov–Petrowskii–Piscounov (FKPP) equation with quadratic nonlinearity and a bistable equation with degenerate cubic nonlinearity. It is known that, for each equation in this family, there is a critical wave speed which separates waves of exponential decay from those of algebraic decay at one of the end states. We derive rigorous asymptotic expansions for these critical speeds by perturbing off the classical FKPP and bistable cases. Our approach uses geometric singular perturbation theory and the blow-up technique, as well as a variant of the Melnikov method, and confirms the results previously obtained through asymptotic analysis in [J.H. Merkin and D.J. Needham, (1993). J. Appl. Math. Phys. (ZAMP) A, vol. 44, No. 4, 707–721] and [T.P. Witelski, K. Ono, and T.J. Kaper, (2001). Appl. Math. Lett., vol. 14, No. 1, 65–73].
引用
收藏
相关论文
共 32 条
[1]  
Billingham J.(1991)A note on the properties of a family of travelling-wave solutions arising in cubic autocatalysis Dynam. Stabil. Sys. 6 33-49
[2]  
Needham D.J.(1975)Perturbation analysis of an approximation to the Hodgkin-Huxley theory Quart. Appl. Math. 32 365-402
[3]  
Casten R.G.(1990)Bifurcation of a homoclinic orbit with a saddle-node equilibrium Diff. Int. Equ. 3 435-466
[4]  
Cohen H.(1991)A method of desingularization for analytic two-dimensional vector field families Bol. Soc. Bras. Mat. 22 93-126
[5]  
Lagerstrom P.A.(1994)The canard unchained or how fast/slow dynamical systems bifurcate Math. Intelligencer 6 38-49
[6]  
Chow S.N.(1971)Persistence and smoothness of invariant manifolds for flows Indiana Univ. Math. J. 21 193-226
[7]  
Lin X.B.(1979)Geometric singular perturbation theory for ordinary differential equations J. Diff. Equs. 31 53-98
[8]  
Denkowska Z.(2000)The wave of advance of advantageous genes Ann. Eugenics 7 355-369
[9]  
Roussarie R.(2000)Numerical computation of canards Int. J. Bifur. Chaos Appl. Sci. Engrg. 10 2669-2687
[10]  
Diener M.(1997)Etude de l’équation de la diffusion avec croissance de la quantité de matiére et son application à un problème biologique Moscow Univ. Math. Bull. 1 1-25