On τ-essentially Invertibility of τ-measurable Operators

被引:0
作者
Airat M. Bikchentaev
机构
[1] Kazan Federal University,N.I. Lobachevskii Institute of Mathematics and Mechanics
来源
International Journal of Theoretical Physics | 2021年 / 60卷
关键词
Hilbert space; Von Neumann algebra; Normal weight; Semifinite trace; Measure topology; -measurable operator; -compact operator; Rearrangement; -essentially invertible operator; Idempotent;
D O I
暂无
中图分类号
学科分类号
摘要
Let ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M} $$\end{document} be a von Neumann algebra of operators on a Hilbert space and τ be a faithful normal semifinite trace on ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M} $$\end{document}. Let I be the unit of the algebra ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M} $$\end{document}. A τ-measurable operator A is said to be τ-essentially right (or left) invertible if there exists a τ-measurable operator B such that the operator I − AB (or I − BA) is τ-compact. A necessary and sufficient condition for an operator A to be τ-essentially left invertible is that A∗A (or, equivalently, A∗A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{A^{\ast }A} $$\end{document}) is τ-essentially invertible. We present a sufficient condition that a τ-measurable operator A not be τ-essentially left invertible. For τ-measurable operators A and P = P2 the following conditions are equivalent: 1. A is τ-essential right inverse for P; 2. A is τ-essential left inverse for P; 3. I − A,I − P are τ-compact; 4. PA is τ-essential left inverse for P. For τ-measurable operators A = A3, B = B3 the following conditions are equivalent: 1. B is τ-essential right inverse for A; 2. B is τ-essential left inverse for A. Pairs of faithful normal semifinite traces on ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M} $$\end{document} are considered.
引用
收藏
页码:567 / 575
页数:8
相关论文
共 28 条
[1]  
Avron J(1994)The index of a pair of projections J. Funct. Anal. 120 220-237
[2]  
Seiler R(2004)The continuity of multiplication for two topologies associated with a semifinite trace on von Neumann algebra Lobachevskii J. Math. 14 17-24
[3]  
Simon B(2004)Minimality of the convergence in measure topology on finite von Neumann algebras Math. Notes 75 315-321
[4]  
Bikchentaev AM(2011)Representation of tripotents and representations via tripotents Linear Algebra Appl. 435 2156-2165
[5]  
Bikchentaev AM(2016)Integrable products of measurable operators Lobachevskii J. Math. 37 397-403
[6]  
Bikchentaev AM(2016)Trace and integrable operators affiliated with a semifinite von Neumann algebra Dokl. Math. 93 16-19
[7]  
Yakushev RS(2016)On idempotent Math. Notes 100 515-525
[8]  
Bikchentaev AM(2017)-measurable operators affiliated to a von Neumann algebra Internat. J. Theor. Phys. 56 3819-3830
[9]  
Bikchentaev AM(2017)On Sib. Math. J. 58 183-189
[10]  
Bikchentaev AM(2018)-compactness of products of Theor. Math. Phys. 195 557-562