Combined model-based and deep learning-based automated 3D zonal segmentation of the prostate on T2-weighted MR images: clinical evaluation

被引:0
作者
Olivier Rouvière
Paul Cezar Moldovan
Anna Vlachomitrou
Sylvain Gouttard
Benjamin Riche
Alexandra Groth
Mark Rabotnikov
Alain Ruffion
Marc Colombel
Sébastien Crouzet
Juergen Weese
Muriel Rabilloud
机构
[1] Hôpital Edouard Herriot,Department of Urinary and Vascular Imaging
[2] Hospices Civils de Lyon,Faculté de Médecine Lyon Est
[3] Université de Lyon,Service de Biostatistique Et Bioinformatique
[4] Université Lyon 1,Laboratoire de Biométrie Et Biologie Évolutive
[5] INSERM,Department of Urology, Centre Hospitalier Lyon Sud
[6] LabTau,Department of Urology
[7] Philips France,undefined
[8] Pôle Santé Publique,undefined
[9] Hospices Civils de Lyon,undefined
[10] Équipe Biostatistique-Santé,undefined
[11] UMR 5558,undefined
[12] CNRS,undefined
[13] Philips Research,undefined
[14] Philips,undefined
[15] Hospices Civils de Lyon,undefined
[16] Hôpital Edouard Herriot,undefined
[17] Hospices Civils de Lyon,undefined
来源
European Radiology | 2022年 / 32卷
关键词
Deep learning; Magnetic resonance imaging; Prostate cancer; Algorithms; Prostatic hyperplasia;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3248 / 3259
页数:11
相关论文
共 144 条
[1]  
Pagniez MA(2020)Predictive factors of missed clinically significant prostate cancers in men with negative magnetic resonance imaging: a systematic review and meta-analysis J Urol 204 24-32
[2]  
Kasivisvanathan V(2020)Three-dimensional convolutional neural network for prostate MRI segmentation and comparison of prostate volume measurements by use of artificial neural network and ellipsoid formula AJR Am J Roentgenol 214 1229-1238
[3]  
Puech P(2021)ESUR/ESUI position paper: developing artificial intelligence for precision diagnosis of prostate cancer using magnetic resonance imaging Eur Radiol 31 302-313
[4]  
Drumez E(2021)Simulated clinical deployment of fully automatic deep learning for clinical prostate MRI assessment Eur Radiol 76 340-351
[5]  
Villers A(2019)Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2 Eur Urol 121 108716-1046
[6]  
Olivier J(2019)Variability of manual segmentation of the prostate in axial T2-weighted MRI: a multi-reader study Eur J Radiol 116 102073-6105
[7]  
Lee DK(2021)Uncertainty-aware temporal self-learning (UATS): semi-supervised learning for segmentation of prostate zones and beyond Artif Intell Med 12 71-1323
[8]  
Sung DJ(2021)Challenge of prostate MRI segmentation on T2-weighted images: inter-observer variability and impact of prostate morphology Insights Imaging 23 1024-795
[9]  
Kim CS(2016)Computer-aided detection of prostate cancer with MRI: technology and applications Acad Radiol 38 6093-736
[10]  
Penzkofer T(2011)Zonal segmentation of prostate using multispectral magnetic resonance images Med Phys 44 1312-1089