The semicircular law of free probability as noncommutative multivariable operator theory

被引:0
作者
Ilwoo Cho
Palle E. T. Jorgensen
机构
[1] St. Ambrose University,Department of Mathematics and Statistics
[2] The University of Iowa,Department of Mathematics
来源
Advances in Operator Theory | 2021年 / 6卷
关键词
Graphs; Graph groupoids; Semicircular elements; The semicircular law; 47A99; 05C62; 17A50; 18B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study semicircular elements induced by connected finite directed graphs. It is shown that if the graph groupoid G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {G}$$\end{document} of a given graph G contains at least one loop finite path, then it induces a semicircular element under suitable representations of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {G}$$\end{document}. As application, if a graph G is fractal (or, satisfies the fractal property) in a certain sense, then it automatically generates infinitely many semicircular elements.
引用
收藏
相关论文
共 53 条
  • [21] Kang S(2007)Continuum vs. discrete networks, graph Laplacians, and reproducing Kernel Hilbert spaces Diskret. Mat. 19 437-448
  • [22] Greene DCV(2001)Entropy encoding, Hilbert spaces, and Kahunen-Loeve transforms Exp. Math. 10 223-245
  • [23] Ghosh A(2012)-Canonical commutation relations and stability of the Cuntz algebra Commun. Stoch. Anal. 6 589-595
  • [24] Boyd S(1987)On bilateral shifts in noncommutative multivariable operator theory Proc. AMS 99 1-39
  • [25] Saberi A(2004)Ideal structure in free semigroupoid algebras from directed graphs J. Funct. Anal. 214 87-133
  • [26] Jorgensen PET(2013)On the structurization of a class of reversible cellular automata Integr. Equations Oper. Theory 75 117-129
  • [27] Pearse EPJ(2009)Constructing a Laplacian on the diamond fractal Fractals 17 347-389
  • [28] Jorgensen PET(1994)Construction of the paths of Brownian motions on star graphs I Invent. Math. 115 115-132
  • [29] Pearse EPJ(2000)Entropies of automorphisms of a topological Markov shift Trans. AMS. 352 111-122
  • [30] Jorgensen PET(2004)-Categories, groupoid actions, equivalent KK-theory, and the Baum-Connes conjecture J. Aust. Math. Soc. 77 1-20