The semicircular law of free probability as noncommutative multivariable operator theory

被引:0
作者
Ilwoo Cho
Palle E. T. Jorgensen
机构
[1] St. Ambrose University,Department of Mathematics and Statistics
[2] The University of Iowa,Department of Mathematics
来源
Advances in Operator Theory | 2021年 / 6卷
关键词
Graphs; Graph groupoids; Semicircular elements; The semicircular law; 47A99; 05C62; 17A50; 18B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study semicircular elements induced by connected finite directed graphs. It is shown that if the graph groupoid G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {G}$$\end{document} of a given graph G contains at least one loop finite path, then it induces a semicircular element under suitable representations of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {G}$$\end{document}. As application, if a graph G is fractal (or, satisfies the fractal property) in a certain sense, then it automatically generates infinitely many semicircular elements.
引用
收藏
相关论文
共 53 条
  • [1] Alpay D(2014)On free stochastic processes and their derivatives Stoch. Process. Appl. 124 3392-3411
  • [2] Jorgensen PET(1998)Subalgebras of Acta Math. 181 159-228
  • [3] Salomon G(2007)-algebras. (III). Multivariable operator theory Acta Appl. Math. 95 95-135
  • [4] Arveson W(2010)Graph von Neumann algebras J. Math. Sci. Adv. Appl. 5 333-393
  • [5] Cho I(2011)Frames, fractals and radial operators in Hilbert space Complex Anal. Oper. Theory 5 1-40
  • [6] Cho I(2019)Fractal properties in Complex Anal. Oper. Theory 13 4065-4115
  • [7] Cho I(2008) induced by partial isometries J. Appl. Math. Comput. 26 1-48
  • [8] Cho I(2009)Banach-space operators acting on semicircular elements induced by orthogonal projections Acta Appl. Math. 108 625-664
  • [9] Cho I(2019)-subalgebras generated by partial isometries Opusc. Math. 39 771-811
  • [10] Jorgensen PET(2006)-subalgebras generated by a single operator in Math. Comput. 75 1931-1970