Letter singularities of integrable and near-integrable hamiltonian systems

被引:0
作者
T. Bau
N. T. Zung
机构
[1] Hanoi Institute of Mathematics,
[2] Max-Planck-Institut für Mathematik,undefined
来源
Journal of Nonlinear Science | 1997年 / 7卷
关键词
KAM theory; integrable system; homo-/heteroclinic orbits; Poincaré-Melnikov function; nonintegrability; 58F14; 58F07; 58F05; 70H05;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this Letter is to show that the singularities of integrable Hamiltonian systems, besides being important for such systems themselves, also have many applications in the study of near-integrable systems. In particular, we will show how they are related to Kolmogorov’s nondegeneracy condition (in the famous KAM theorem), the Poincaré-Melnikov function and its generalizations, topological entropy, and nonintegrability criteria.
引用
收藏
页码:1 / 7
页数:6
相关论文
共 12 条
[1]  
Devaney R.(1978)Transversal homoclinic orbit in an integrable system Amer. J. Math. 100 631-642
[2]  
Horozov E.(1990)Perturbations of the spherical pendulum and Abelian integrals J. Reine Angew. Math. 408 114-135
[3]  
Ito H.(1991)Action-angles coordinates at singularities for analytic integrable systems Math. Z. 206 363-407
[4]  
Knörrer H.(1985)Singular fibres of the momentum mapping for integrable Hamiltonian systems J. Reine Angew. Math. 355 67-107
[5]  
Koiller J.(1990)Melnikov formulas for nearly integrable Hamiltonian systems MSRI Publ. 20 183-188
[6]  
Kozlov V. V.(1983)Integrability and nonintegrability in Hamiltonian dynamics Russ. Math. Surv. 38 1-76
[7]  
Melnikov V. K.(1963)On the stability of the center for time-periodic perturbations Trans. Mosc. Math. Soc. 12 1-57
[8]  
Paternain G.(1992)On the topology of manifolds with completely integrable geodesic flows Ergodic Th. Dyn. Sys. 12 109-121
[9]  
Robinson C.(1988)Horseshoes for autonomous Hamiltonian systems using the Melnikov integral Ergodic Th. Dyn. Sys. 8 395-409
[10]  
Smale S.(1970)Topology and dynamics I Invent. Math. 10 305-331