Sifting for small primes from an arithmetic progression

被引:0
|
作者
John B. Friedlander
Henryk Iwaniec
机构
[1] University of Toronto,Department of Mathematics
[2] Rutgers University,Department of Mathematics
来源
Science China Mathematics | 2023年 / 66卷
关键词
sieve; small primes; Linnik theorem; 11M20; 11N05; 11N35; 11P32;
D O I
暂无
中图分类号
学科分类号
摘要
In this work and its sister paper (Friedlander and Iwaniec (2023)), we give a new proof of the famous Linnik theorem bounding the least prime in an arithmetic progression. Using sieve machinery in both papers, we are able to dispense with the log-free zero density bounds and the repulsion property of exceptional zeros, two deep innovations begun by Linnik and relied on in earlier proofs.
引用
收藏
页码:2715 / 2730
页数:15
相关论文
共 50 条
  • [1] Sifting for small primes from an arithmetic progression
    John B.Friedlander
    Henryk Iwaniec
    Science China(Mathematics), 2023, 66 (12) : 2715 - 2730
  • [2] Sifting for small primes from an arithmetic progression On the Fiftieth Anniversary of Chen's Goldbach Theorem
    Friedlander, John B.
    Iwaniec, Henryk
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (12) : 2715 - 2730
  • [3] Primes in arithmetic progression
    Dani, SG
    CURRENT SCIENCE, 2004, 87 (02): : 134 - 134
  • [4] EULER CONSTANTS FROM PRIMES IN ARITHMETIC PROGRESSION
    Languasco, Alessandro
    Moree, Pieter
    MATHEMATICS OF COMPUTATION, 2025,
  • [6] PRIMES IN AN ARITHMETIC-PROGRESSION
    ABBOTT, WL
    BLOOM, DM
    ZIPPERER, JB
    BREUSCH, R
    CARTER, FS
    CHRISTOPHER, J
    COVILL, RJ
    EISNER, M
    FICKETT, J
    FILESTA, M
    FOSTER, LL
    FRANCESCHINE, N
    JAGER, T
    KUIPERS, L
    KWONG, MK
    LESSELLS, GS
    METZGER, J
    MIKU, N
    SHALLITT, J
    SHULMANG
    SILVERMAN, J
    SPEARMAN, B
    TROST, E
    WIENER, J
    SPELLMAN, J
    YANGBO, Y
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (05): : 406 - 406
  • [7] CONSECUTIVE PRIMES IN ARITHMETIC PROGRESSION
    LANDER, LJ
    PARKIN, TR
    MATHEMATICS OF COMPUTATION, 1967, 21 (99) : 489 - &
  • [8] 17 PRIMES IN ARITHMETIC PROGRESSION
    WEINTRAUB, S
    MATHEMATICS OF COMPUTATION, 1977, 31 (140) : 1030 - 1030
  • [9] ON THE SMALL SIEVE .1. SIFTING BY PRIMES
    ERDOS, P
    RUZSA, IZ
    JOURNAL OF NUMBER THEORY, 1980, 12 (03) : 385 - 394
  • [10] On the second moment for primes in an arithmetic progression
    Goldston, DA
    Yildirim, CY
    ACTA ARITHMETICA, 2001, 100 (01) : 85 - 104