The generalization of Sokhotski formulas on two complex variables

被引:0
作者
Gallo A. [1 ]
机构
[1] Dipartimento di Matematica e Applicazioni, Facoltà di Ingegneria, 21 80125 Mapoli, Via Claudio
关键词
Complex Plane; Similar Reason; Lipschitz Condition; Proven Theorem; Finite Length;
D O I
10.1007/BF02844282
中图分类号
学科分类号
摘要
So called Sokhotski formulas present a jump of the integral of Cauchy type at the contour on the complex plane ℂ [1]. The generalization of Sokhotski formulas on two complex variables is obtained for the contours on ℂ 1. ℂ 2 of the same properties as studied before for one complex variable. The integral of Cauchy type for two complex variables is defined by a function satisfying the Lipschitz condition on the contour of integration. © 1997 Springer-Verlag.
引用
收藏
页码:425 / 438
页数:13
相关论文
共 4 条
[1]  
Lavrentiev M., Chabat B., Mèthodes De La théorie Des Functions d'une Variable Complex, (1972)
[2]  
Pavlotsky I.P., Vestnik of Moscow University, 3, (1960)
[3]  
Hormander L., An introduction to complex analysis in several variables, (1990)
[4]  
Smirnov V.I., Corso di Matematica, III, (1978)