On Separation of Points from Additive Subgroups of Banach Spaces by Continuous Characters and Positive Definite Functions

被引:0
|
作者
Wojciech Banaszczyk
Robert Stegliński
机构
[1] University of Lodz,Faculty of Mathematics and Computer Science
来源
Positivity | 2008年 / 12卷
关键词
43A35; 46B20; 47B10; Additive subgroups of Banach spaces; Hilbert-Schmidt operators; positive definite functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be an additive subgroup of a normed space X. We say that a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x\in X\setminus G$$ \end{document} is weakly separated (resp. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal P$$ \end{document}-separated) from G if it can be separated from G by a continuous character (resp. by a continuous positive definite function). Let T : X → Y be a continuous linear operator. Consider the following conditions:
引用
收藏
页码:241 / 268
页数:27
相关论文
共 10 条