On the Heat Flow for Harmonic Maps with Potential

被引:0
作者
Ali Fardoun
Andrea Ratto
Rachid Regbaoui
机构
[1] Université de Brest,Département de Mathématiques
[2] Facoltà di Ingegneria,Dipartimento di Matematica
[3] Université de Brest,Département de Mathématiques
来源
Annals of Global Analysis and Geometry | 2000年 / 18卷
关键词
harmonic maps; heat equation;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, g) and (N, h) be twoconnected Riemannian manifolds without boundary (M compact,N complete). Let G ε C∞(N): ifu: M → N is a smooth map, we consider the functional EG(u) = (1/2) ∫M [|du|2− 2G(u)]dVM and we study its associated heat equation. Inthe compact case, we recover a version of the Eells–Sampson theorem,while for noncompact target manifold N, we establishsuitable hypotheses and ensure global existence and convergence atinfinity. In the second part of the paper, we study phenomena of blowingup solutions.
引用
收藏
页码:555 / 567
页数:12
相关论文
共 21 条
  • [1] Chen Q.(1998)Liouville theorem for harmonic maps with potential Manuscripta Math. 95 507-515
  • [2] Chen Y.(1990)Blow-up analysis for heat flows of harmonic maps Inven. Math. 99 567-578
  • [3] Ding W. Y.(1989)Existence and partial regularity for heat flows for harmonic maps Math. Z. 201 83-103
  • [4] Chen Y.(1978)A report on harmonic maps Bull. London Math. Soc. 16 1-68
  • [5] Struwe M.(1988)Another report on harmonic maps Bull. London Math. Soc. 20 385-524
  • [6] Eells J.(1964)Harmonic mappings of Riemannian manifolds Amer. J. Math. 20 109-160
  • [7] Lemaire L.(1997)Harmonic maps with potential Calculus of Variations and PDE's 5 183-197
  • [8] Eells J.(1967)On homotopic harmonic maps Canad. J. Math. 19 673-687
  • [9] Lemaire L.(1995)The Landau–Lifshitz equation with the external field – A new extension for harmonic maps with values in Math. Z 220 171-188
  • [10] Eells J.(1995)Multiple solutions from the static Landau–Lifshitz equation from Math. Z 220 295-306