Uniform Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Boundedness for Oscillatory Singular Integrals with C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document} Phases

被引:0
作者
Yibiao Pan
机构
[1] University of Pittsburgh,Department of Mathematics
关键词
Oscillatory integrals; Singular integrals; Calderón–Zygmund kernels; spaces; Hölder class; Primary 42B20; Secondary 42B30; 42B35;
D O I
10.1007/s00041-022-09982-y
中图分类号
学科分类号
摘要
We establish the uniform boundedness of oscillatory singular integral operators on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces for C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document} phases and Hölder class singular kernels. Our main result improves and unifies several existing Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} results for oscillatory singular integrals.
引用
收藏
相关论文
共 50 条
[34]   Large values of cusp forms on GLn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {GL}_n$$\end{document} [J].
Farrell Brumley ;
Nicolas Templier .
Selecta Mathematica, 2020, 26 (4)
[35]   QK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal Q}_K}$$\end{document} Spaces: A Brief and Selective Survey [J].
Guanlong Bao ;
Hasi Wulan .
Acta Mathematica Scientia, 2021, 41 (6) :2039-2054
[37]   Dominated convergence theorems in Haagerup noncommutative Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document}-spaces [J].
Turdebek N. Bekjan ;
Manat Mustafa .
Advances in Operator Theory, 2023, 8 (2)
[39]   Univalent Functions in Cyclic Vectors in Qp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_p$$\end{document} Space [J].
Zhengyuan Zhuo ;
Shanli Ye .
Complex Analysis and Operator Theory, 2014, 8 (5) :1077-1086