Boundedness Properties of Pseudo-Differential and Calderón-Zygmund Operators on Modulation Spaces

被引:0
作者
Mitsuru Sugimoto
Naohito Tomita
机构
[1] Osaka University,Department of Mathematics, Graduate School of Science
来源
Journal of Fourier Analysis and Applications | 2008年 / 14卷
关键词
Calderón-Zygmund operators; Modulation spaces; Pseudo-differential operators; 42B20; 42B35; 47G30;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the boundedness of pseudo-differential operators with symbols in Sρ,δm on the modulation spaces Mp,q. We discuss the order m for the boundedness Op(Sρ,δm)⊂ℒ(Mp,q) to be true. We also prove the existence of a Calderón-Zygmund operator which is not bounded on the modulation space Mp,q with q≠2. This unboundedness is still true even if we assume a generalized T(1) condition. These results are induced by the unboundedness of pseudo-differential operators on Mp,q whose symbols are of the class S1,δ0 with 0<δ<1.
引用
收藏
页码:124 / 143
页数:19
相关论文
共 19 条
[1]  
Calderón A.P.(1972)A class of bounded pseudo-differential operators Proc. Nat. Acad. Sci. 69 1185-1187
[2]  
Vaillancourt R.(1984)A boundedness criterion for generalized Calderón-Zygmund operators Ann. Math. 120 371-397
[3]  
David G.(1973) bounds for pseudo-differential operators Israel J. Math. 14 413-417
[4]  
Journé J.L.(2006)Modulation spaces: Looking back and ahead Sampl. Theory Signal Image Process. 5 109-140
[5]  
Fefferman C.(1988)The boundedness of Calderón-Zygmund operators on the spaces Rev. Mat. Iberoamericana 4 41-72
[6]  
Feichtinger H.G.(2006)Time-Frequency analysis of Sjöstrand’s class Rev. Mat. Iberoamericana 22 703-724
[7]  
Frazier M.(1999)Modulation spaces and pseudodifferential operators Integral Equations Operator Theory 34 439-457
[8]  
Torres R.(1985)Continuité sur les espaces de Besov des opérateurs définis par des intégrales singulières Ann. Inst. Fourier (Grenoble) 35 175-187
[9]  
Weiss G.(1994)An algebra of pseudodifferential operators Math. Res. Lett. 1 185-192
[10]  
Gröchenig K.(2007)The dilation property of modulation spaces and their inclusion relation with Besov spaces J. Funct. Anal. 248 79-106