A Test for Global Attractivity of Linear Dynamic Equations with Delay

被引:1
作者
Alsharif, Nour H. M. [1 ]
Karpuz, Basak [2 ]
机构
[1] Dokuz Eylul Univ, Grad Sch Nat & Appl Sci, Dept Math, Tinaztepe Campus, TR-35160 Izmir, Turkiye
[2] Dokuz Eylul Univ, Fac Sci, Dept Math, Tinaztepe Campus, TR-35160 Izmir, Turkiye
关键词
Delay dynamic equations; Global attractivity; Time scale; 3/2 STABILITY THEOREM; DIFFERENTIAL-EQUATIONS; EXPONENTIAL STABILITY; ASYMPTOTIC STABILITY; BEHAVIOR;
D O I
10.1007/s12346-023-00907-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the delay dynamic equation Based on Lyapunov's method, we study global attractivity of the trivial solution of (*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}). Our new result generalizes some well-known results in the theory of difference and differential equations to dynamic equations of the form (*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}). We also present some examples on nonstandard time scales to illustrate the importance of the new result.
引用
收藏
页数:18
相关论文
共 24 条
[1]  
Akin-Bohner E., 2010, Commun. Math. Anal, V9, P93
[2]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[3]   On Different Types of Stability for Linear Delay Dynamic Equations [J].
Braverman, Elena ;
Karpuz, Basak .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2017, 36 (03) :343-375
[4]   Uniform exponential stability of first-order dynamic equations with several delays [J].
Braverman, Elena ;
Karpuz, Basak .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (21) :10468-10485
[5]   On the exponential stability of dynamic equations on time scales [J].
Du, Nguyen Huu ;
Tien, Le Huy .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (02) :1159-1174
[6]  
Erbe LH, 1995, Journal of Difference Equations and Applications, P151, DOI [DOI 10.1080/10236199508808016, 10.1080/10236199508808016]
[7]  
Gyori I, 1997, ADVANCES IN DIFFERENCE EQUATIONS-BOOK, P295
[8]   Stability for first-order delay dynamic equations on time scales (vol 53, pg 1820, 2007) [J].
Karpuz, Basak ;
Oecalan, Oezkan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) :1157-1158
[9]   Asymptotic stability of the complex dynamic equation uΔ - z.u+w.uσ=0 [J].
Karpuz, Basak .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) :925-937
[10]   Volterra Theory on Time Scales [J].
Karpuz, Basak .
RESULTS IN MATHEMATICS, 2014, 65 (3-4) :263-292