On special Riemann xi function formulae of Hardy involving the digamma function

被引:0
作者
Alexander E. Patkowski
机构
来源
Acta Scientiarum Mathematicarum | 2021年 / 87卷
关键词
11M06; 33C15; Fourier integrals; Riemann xi function; digamma function;
D O I
暂无
中图分类号
学科分类号
摘要
We consider some properties of integrals considered by Hardy and Koshliakov that have connections to the digamma function. We establish a new general integral formula that provides a connection to the polygamma function. We also obtain lower and upper bounds for Hardy’s integral through properties of the digamma function.
引用
收藏
页码:225 / 232
页数:7
相关论文
共 20 条
  • [1] Csordas G(2015)Fourier transforms of positive definite kernels and the Riemann ξ-function Comput. Methods Funct. Theory 15 373-391
  • [2] Dixit A(2013)Analogues of the general theta transformation formula Proc. Roy. Soc. Edinburgh, Sect. A 143 371-399
  • [3] Dixit A(2015)Zeros of combinations of the Riemann ξ-function on bounded vertical shifts J. Number Theory 149 404-434
  • [4] Robles N(2016)Riesz-type criteria and theta transformation analogues J. Number Theory 160 385-408
  • [5] Roy A(2015)Self-reciprocal functions, powers of the Riemann zeta function and modular-type transformations J. Number Theory 147 211-249
  • [6] Zaharescu A(1936)Some solutions of the equation J. London Math. Soc 11 99-103
  • [7] Dixit A(2016)( J. Phys. A: Math. Theory 49 454004-261
  • [8] Roy A(1915)) Quart. J. Math. 46 260-8
  • [9] Zaharescu A(1937)A note on the Fourier transform Comp. Rend. (Doklady) Acad. Sci. URSS 15 3-308
  • [10] Dixit A(2005)Note by Mr. G. H. Hardy on the preceding paper J. Math. Anal. Appl. 310 303-260