Nanosecond laser ablation for pulsed laser deposition of yttria

被引:0
|
作者
Sucharita Sinha
机构
[1] Bhabha Atomic Research Centre,Laser and Plasma Technology Division
来源
Applied Physics A | 2013年 / 112卷
关键词
Yttria; Material Removal; Pulse Laser Deposition; Target Surface; Laser Fluence;
D O I
暂无
中图分类号
学科分类号
摘要
A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.
引用
收藏
页码:855 / 862
页数:7
相关论文
共 50 条
  • [21] Pulsed laser deposition of lysozyme: the dependence on shot numbers and the angular distribution
    C. Constantinescu
    A. Matei
    J. Schou
    S. Canulescu
    M. Dinescu
    Applied Physics B, 2013, 113 : 367 - 371
  • [22] Characterization of highly charged titanium ions produced by nanosecond pulsed laser
    Abbasi, S. A.
    Hussain, M. S.
    Ilyas, B.
    Rafique, M.
    Dogar, A. H.
    Qayyum, A.
    LASER AND PARTICLE BEAMS, 2015, 33 (01) : 81 - 86
  • [23] Dynamics of STO heteroepitaxial growth by pulsed laser deposition
    X. Z. Liu
    S. M. He
    D. H. Li
    Q. F. Lu
    Z. H. Wang
    S. X. Bao
    Y. R. Li
    Journal of Materials Science, 2005, 40 : 5139 - 5145
  • [24] Pulsed laser deposition of uniform semiconductor nanodot arrays
    Manisha Gupta
    Vincent Sauer
    Ying Yin Tsui
    Applied Physics A, 2013, 110 : 817 - 821
  • [25] Pulsed laser deposition of high temperature protonic films
    Dynys, F. W.
    Berger, M. H.
    Sayir, A.
    SOLID STATE IONICS, 2006, 177 (26-32) : 2333 - 2337
  • [26] Pulsed laser deposition of ITO thin films and their characteristics
    D. A. Zuev
    A. A. Lotin
    O. A. Novodvorsky
    F. V. Lebedev
    O. D. Khramova
    I. A. Petuhov
    Ph. N. Putilin
    A. N. Shatohin
    M. N. Rumyanzeva
    A. M. Gaskov
    Semiconductors, 2012, 46 : 410 - 413
  • [27] Pulsed laser deposition of hard coatings in atmospheric air
    V.I. Konov
    T.V. Kononenko
    E.N. Loubnin
    F. Dausinger
    D. Breitling
    Applied Physics A, 2004, 79 : 931 - 936
  • [28] Laser-fluence effects on NbNx thin films fabricated by pulsed laser deposition
    Farha, Ashraf Hassan
    Er, Ali Oguz
    Ufuktepe, Yuksel
    Elsayed-Ali, Hani E.
    MATERIALS CHEMISTRY AND PHYSICS, 2012, 132 (2-3) : 667 - 672
  • [29] Laser surface modification of titanium substrate for pulsed laser deposition of highly adherent hydroxyapatite
    P. Rajesh
    C. V. Muraleedharan
    Manoj Komath
    Harikrishna Varma
    Journal of Materials Science: Materials in Medicine, 2011, 22 : 1671 - 1679
  • [30] Drilling enhancement by nanosecond-nanosecond collinear dual-pulse laser ablation of titanium in vacuum
    Krstulovic, Niksa
    Milosevic, Slobodan
    APPLIED SURFACE SCIENCE, 2010, 256 (13) : 4142 - 4148