On Domatic and Total Domatic Numbers of Cartesian Products of Graphs

被引:0
作者
P. Francis
Deepak Rajendraprasad
机构
[1] VIT-AP University,Department of Mathematics, SAS
[2] Indian Institute of Technology Palakkad,Department of Computer Science
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Cartesian product; Domatic number; Hamming graph; Torus; Total domatic number; 05C15; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A domatic (resp. total domatic) k-coloring of a graph G is an assignment of k colors to the vertices of G such that each vertex contains vertices of all k colors in its closed neighborhood (resp. open neighborhood). The domatic (resp. total domatic) number of G, denoted d(G) (resp. dt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_t (G)$$\end{document}), is the maximum k for which G has a domatic (resp. total domatic) k-coloring. In this paper, we show that for two non-trivial graphs G and H, the domatic and total domatic numbers of their Cartesian product G□H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \mathbin \square H$$\end{document} is bounded above by max{|V(G)|,|V(H)|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{|V(G)|, |V(H)|\}$$\end{document} and below by max{d(G),d(H)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{d(G), d(H)\}$$\end{document}. Both these bounds are tight for an infinite family of graphs. Further, we show that if H is bipartite, then dt(G□H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_t(G \mathbin \square H)$$\end{document} is bounded below by 2min{dt(G),dt(H)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\min \{d_t(G),d_t(H)\}$$\end{document} and d(G□H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(G \mathbin \square H)$$\end{document} is bounded below by 2min{d(G),dt(H)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\min \{d(G),d_t(H)\}$$\end{document}. As a consequences, we get new bounds for the domatic and total domatic number of hypercubes and Hamming graphs of certain dimensions, and exact values for some n-dimensional tori which turns out to be a generalization of a result due to Gravier from 2002.
引用
收藏
相关论文
共 50 条
  • [41] On the metric dimension of cartesian products of graphs
    Caceres, Jose
    Hernando, Carmen
    Mora, Merce
    Pelayo, Ignacio M.
    Puertas, Maria L.
    Seara, Carlos
    Wood, David R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) : 423 - 441
  • [42] Domatic partition in homogeneous wireless sensor networks
    Yu, Jiguo
    Zhang, Qingbo
    Yu, Dongxiao
    Chen, Congcong
    Wang, Guanghui
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2014, 37 : 186 - 193
  • [43] The Signed Edge-Domatic Number of a Graph
    Li, Xiang-Jun
    Xu, Jun-Ming
    GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1881 - 1890
  • [44] Total Mutual-Visibility in Graphs with Emphasis on Lexicographic and Cartesian Products
    Kuziak, Dorota
    Rodriguez-Velazquez, Juan A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (06)
  • [45] Total Mutual-Visibility in Graphs with Emphasis on Lexicographic and Cartesian Products
    Dorota Kuziak
    Juan A. Rodríguez-Velázquez
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [46] Connectivity of Cartesian products of graphs
    Spacapan, Simon
    APPLIED MATHEMATICS LETTERS, 2008, 21 (07) : 682 - 685
  • [47] THE DOMATIC NUMBER PROBLEM ON SOME PERFECT GRAPH FAMILIES
    KAPLAN, H
    SHAMIR, R
    INFORMATION PROCESSING LETTERS, 1994, 49 (01) : 51 - 56
  • [48] The (d, 1)-total labelling of square of cycles and their Cartesian products with bipartite graphs
    Zuo, Liancui
    Bai, Dan
    Shang, Chunhong
    ARS COMBINATORIA, 2019, 143 : 227 - 236
  • [49] Upper bounds on the signed (k, k)-domatic number
    Volkmann, Lutz
    AEQUATIONES MATHEMATICAE, 2013, 86 (03) : 279 - 287
  • [50] On the crossing numbers of Cartesian products with paths
    Bokal, Drago
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (03) : 381 - 384