On Domatic and Total Domatic Numbers of Cartesian Products of Graphs

被引:0
作者
P. Francis
Deepak Rajendraprasad
机构
[1] VIT-AP University,Department of Mathematics, SAS
[2] Indian Institute of Technology Palakkad,Department of Computer Science
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Cartesian product; Domatic number; Hamming graph; Torus; Total domatic number; 05C15; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A domatic (resp. total domatic) k-coloring of a graph G is an assignment of k colors to the vertices of G such that each vertex contains vertices of all k colors in its closed neighborhood (resp. open neighborhood). The domatic (resp. total domatic) number of G, denoted d(G) (resp. dt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_t (G)$$\end{document}), is the maximum k for which G has a domatic (resp. total domatic) k-coloring. In this paper, we show that for two non-trivial graphs G and H, the domatic and total domatic numbers of their Cartesian product G□H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \mathbin \square H$$\end{document} is bounded above by max{|V(G)|,|V(H)|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{|V(G)|, |V(H)|\}$$\end{document} and below by max{d(G),d(H)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{d(G), d(H)\}$$\end{document}. Both these bounds are tight for an infinite family of graphs. Further, we show that if H is bipartite, then dt(G□H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_t(G \mathbin \square H)$$\end{document} is bounded below by 2min{dt(G),dt(H)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\min \{d_t(G),d_t(H)\}$$\end{document} and d(G□H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(G \mathbin \square H)$$\end{document} is bounded below by 2min{d(G),dt(H)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\min \{d(G),d_t(H)\}$$\end{document}. As a consequences, we get new bounds for the domatic and total domatic number of hypercubes and Hamming graphs of certain dimensions, and exact values for some n-dimensional tori which turns out to be a generalization of a result due to Gravier from 2002.
引用
收藏
相关论文
共 50 条
  • [31] On the total {k}-domination number of Cartesian products of graphs
    Li, Ning
    Hou, Xinmin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 18 (02) : 173 - 178
  • [32] On the Crossing Numbers of Cartesian Products of Stars and Graphs on Five Vertices
    Kiesc, Marian
    COMBINATORIAL ALGORITHMS, 2009, 5874 : 324 - 333
  • [33] ON THE CROSSING NUMBERS OF CARTESIAN PRODUCTS OF STARS AND GRAPHS OF ORDER SIX
    Klesc, Marian
    Schroetter, Stefan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (03) : 583 - 597
  • [34] On the total {k}-domination number of Cartesian products of graphs
    Ning Li
    Xinmin Hou
    Journal of Combinatorial Optimization, 2009, 18 : 173 - 178
  • [35] THE b-DOMATIC NUMBER OF A GRAPH
    Favaron, Odile
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (04) : 747 - 757
  • [36] The crossing numbers of Cartesian products of paths with 5-vertex graphs
    Klesc, M
    DISCRETE MATHEMATICS, 2001, 233 (1-3) : 353 - 359
  • [37] On the Crossing Numbers of Cartesian Products of Small Graphs with Paths, Cycles and Stars
    Clancy K.
    Haythorpe M.
    Newcombe A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2024, 119 : 323 - 333
  • [38] The signed (k, k)-domatic number of digraphs
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    MATHEMATICAL COMMUNICATIONS, 2012, 17 (02) : 537 - 546
  • [39] The Signed Edge-Domatic Number of a Graph
    Xiang-Jun Li
    Jun-Ming Xu
    Graphs and Combinatorics, 2013, 29 : 1881 - 1890
  • [40] The Roman k-domatic number of a graph
    Seyed Mahmoud Sheikholeslami
    Lutz Volkmann
    Acta Mathematica Sinica, English Series, 2011, 27 : 1899 - 1906