On Domatic and Total Domatic Numbers of Cartesian Products of Graphs

被引:0
|
作者
P. Francis
Deepak Rajendraprasad
机构
[1] VIT-AP University,Department of Mathematics, SAS
[2] Indian Institute of Technology Palakkad,Department of Computer Science
关键词
Cartesian product; Domatic number; Hamming graph; Torus; Total domatic number; 05C15; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A domatic (resp. total domatic) k-coloring of a graph G is an assignment of k colors to the vertices of G such that each vertex contains vertices of all k colors in its closed neighborhood (resp. open neighborhood). The domatic (resp. total domatic) number of G, denoted d(G) (resp. dt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_t (G)$$\end{document}), is the maximum k for which G has a domatic (resp. total domatic) k-coloring. In this paper, we show that for two non-trivial graphs G and H, the domatic and total domatic numbers of their Cartesian product G□H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \mathbin \square H$$\end{document} is bounded above by max{|V(G)|,|V(H)|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{|V(G)|, |V(H)|\}$$\end{document} and below by max{d(G),d(H)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{d(G), d(H)\}$$\end{document}. Both these bounds are tight for an infinite family of graphs. Further, we show that if H is bipartite, then dt(G□H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_t(G \mathbin \square H)$$\end{document} is bounded below by 2min{dt(G),dt(H)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\min \{d_t(G),d_t(H)\}$$\end{document} and d(G□H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(G \mathbin \square H)$$\end{document} is bounded below by 2min{d(G),dt(H)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\min \{d(G),d_t(H)\}$$\end{document}. As a consequences, we get new bounds for the domatic and total domatic number of hypercubes and Hamming graphs of certain dimensions, and exact values for some n-dimensional tori which turns out to be a generalization of a result due to Gravier from 2002.
引用
收藏
相关论文
共 50 条
  • [21] Restrained Roman and restrained Italian domatic numbers of graphs
    Volkmann, Lutz
    DISCRETE APPLIED MATHEMATICS, 2022, 322 : 153 - 159
  • [22] On domatic number of graphs
    Shadravan, M.
    Borzooei, R. A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2023, 17 (08)
  • [23] Upper bounds on the signed total domatic number of graphs
    Volkmann, Lutz
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (08) : 832 - 837
  • [24] The total {k}-domatic number of wheels and complete graphs
    Jing Chen
    Xinmin Hou
    Ning Li
    Journal of Combinatorial Optimization, 2012, 24 : 162 - 175
  • [25] SIGNED TOTAL k-DOMATIC NUMBERS OF DIGRAPHS
    Atapour, Maryam
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2011, 35 (03): : 359 - 368
  • [26] Twin signed total Roman domatic numbers in digraphs
    Amjadi, Jafar
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (01) : 17 - 26
  • [27] On the Total {k}-Domination and Total {k}-Domatic Number of Graphs
    Aram, H.
    Sheikholeslami, S. M.
    Volkmann, L.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) : 39 - 47
  • [28] The total {k}-domatic number of wheels and complete graphs
    Chen, Jing
    Hou, Xinmin
    Li, Ning
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (03) : 162 - 175
  • [29] CUBIC GRAPHS WITH TOTAL DOMATIC NUMBER AT LEAST TWO
    Akbari, Saieed
    Motiei, Mohammad
    Mozaffari, Sahand
    Yazdanbod, Sina
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (01) : 75 - 82
  • [30] A note on the complexity of the total domatic partition problem in graphs
    Lee, Chuan-Min
    Wu, Sz-Lin
    Chen, Hsin-Lun
    Chang, Chia-Wei
    Lee, Tai
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 108 : 3 - 14