On Domatic and Total Domatic Numbers of Cartesian Products of Graphs

被引:0
|
作者
P. Francis
Deepak Rajendraprasad
机构
[1] VIT-AP University,Department of Mathematics, SAS
[2] Indian Institute of Technology Palakkad,Department of Computer Science
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Cartesian product; Domatic number; Hamming graph; Torus; Total domatic number; 05C15; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A domatic (resp. total domatic) k-coloring of a graph G is an assignment of k colors to the vertices of G such that each vertex contains vertices of all k colors in its closed neighborhood (resp. open neighborhood). The domatic (resp. total domatic) number of G, denoted d(G) (resp. dt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_t (G)$$\end{document}), is the maximum k for which G has a domatic (resp. total domatic) k-coloring. In this paper, we show that for two non-trivial graphs G and H, the domatic and total domatic numbers of their Cartesian product G□H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \mathbin \square H$$\end{document} is bounded above by max{|V(G)|,|V(H)|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{|V(G)|, |V(H)|\}$$\end{document} and below by max{d(G),d(H)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{d(G), d(H)\}$$\end{document}. Both these bounds are tight for an infinite family of graphs. Further, we show that if H is bipartite, then dt(G□H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_t(G \mathbin \square H)$$\end{document} is bounded below by 2min{dt(G),dt(H)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\min \{d_t(G),d_t(H)\}$$\end{document} and d(G□H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(G \mathbin \square H)$$\end{document} is bounded below by 2min{d(G),dt(H)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\min \{d(G),d_t(H)\}$$\end{document}. As a consequences, we get new bounds for the domatic and total domatic number of hypercubes and Hamming graphs of certain dimensions, and exact values for some n-dimensional tori which turns out to be a generalization of a result due to Gravier from 2002.
引用
收藏
相关论文
共 50 条
  • [21] The signed edge-domatic number of nearly cubic graphs
    Dan, Jia-Xiong
    Zhu, Zhi-Bo
    Yang, Xin-Kui
    Li, Ru-Yi
    Zhao, Wei-Jie
    Li, Xiang-Jun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 435 - 445
  • [22] The signed edge-domatic number of nearly cubic graphs
    Jia-Xiong Dan
    Zhi-Bo Zhu
    Xin-Kui Yang
    Ru-Yi Li
    Wei-Jie Zhao
    Xiang-Jun Li
    Journal of Combinatorial Optimization, 2022, 44 : 435 - 445
  • [23] Some new results on the b-domatic number of graphs
    Benatallah, Mohammed
    Chellali, Mustapha
    Eschouf, Noureddine Ikhlef
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (01) : 53 - 64
  • [24] Signed total (k, k)-domatic number of digraphs
    S. M. Sheikholeslami
    L. Volkmann
    Aequationes mathematicae, 2012, 83 : 87 - 96
  • [25] Distinguishing numbers of Cartesian products of multiple complete graphs
    Fisher, Michael J.
    Isaak, Garth
    ARS MATHEMATICA CONTEMPORANEA, 2012, 5 (01) : 159 - 173
  • [26] On the crossing numbers of Cartesian products of paths with special graphs
    Klesc, Marian
    Kravecova, Daniela
    Petrillova, Jana
    CARPATHIAN JOURNAL OF MATHEMATICS, 2014, 30 (03) : 317 - 325
  • [27] The upper domatic number of a graph
    Haynes, Teresa W.
    Hedetniemi, Jason T.
    Hedetniemi, Stephen T.
    McRae, Alice
    Phillips, Nicholas
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 139 - 148
  • [28] Bounds on the l-total k-domatic number of a graph
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2017, 104 : 103 - 113
  • [29] Quantum Algorithm for the Domatic Number Problem
    Ambainis, Andris
    Repko, Ilja
    BALTIC JOURNAL OF MODERN COMPUTING, 2024, 12 (03): : 259 - 269
  • [30] Distinguishing chromatic numbers of complements of Cartesian products of complete graphs
    Cavers, M. S.
    Seyffarth, K.
    White, E. P.
    DISCRETE MATHEMATICS, 2018, 341 (09) : 2431 - 2441