Biholomorphic Mappings and the Extension Operators on New Hartogs Domains

被引:0
作者
Yan Yan Cui
Chao Jun Wang
Hao Liu
机构
[1] Zhoukou Normal University,College of Mathematics and Statistics
[2] Hebei Normal University,College of Mathematics and Information Science
[3] He’nan University,Institute of Contemporary Mathematics
来源
Acta Mathematica Sinica, English Series | 2019年 / 35卷
关键词
Biholomorphic mapping; Roper-Suffridge operator; Hartogs domain; 32A30; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we generalize the Roper-Suffridge operator on the extended Hartogs domains. By using the geometric properties and the growth theorems of subclasses of biholomorphic mappings, we obtain the generalized operators preserve the properties of parabolic and spirallike mappings of type β and order ρ, SΩ*(β,A,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\Omega^*(\beta, A, B)$$\end{document}, almost starlike mapping of complex order λ on ΩN under different conditions, and thus we get the corresponding results on the unit ball Bn in ℂn. The conclusions lead to some known results.
引用
收藏
页码:671 / 689
页数:18
相关论文
共 39 条
[1]  
Feng S X(2008)The generalized Roper-Suffridge extension operator Acta. Math. Sci. 28B 63-80
[2]  
Liu T S(2011)Parabolic starlike mapping in several complex variables Acta. Math. Sin., Chinese Series 54 467-482
[3]  
Feng S X(2003)The generalized Roper-Suffridge extension operator J. Math. Anal. Appl. 284 425-434
[4]  
Zhang X F(2002)Extension operators for locally univalent mappings Michigan Math. J. 50 37-55
[5]  
Chen H Y(2000)Univalent mappings associated with the Roper-Suffridge extension operator J. Analyse Math. 81 331-342
[6]  
Gong S(2001)The growth theorem and quasiconformal extension of strongly spirallike mappings of type α. Complex Variables Theory and Application 44 281-297
[7]  
Liu T S(2015)The distortion theorem for parabolic starlike mappings of order Advances in Math. 44 545-552
[8]  
Graham I(2007) along unit direction Science in China 37A 1193-1206
[9]  
Hamada H(1998)The generalized Roper-Suffridge operator on bounded complete Reinhardt domains Chin. Ann. of Math. 19B 401-408
[10]  
Kohr G(2009)The growth theorem for starlike mappings on bounded starlike circular domains Chin. Quart. J. of Math. 24 310-316