Infinitely Many Solutions for a Class of Kirchhoff Problems Involving the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x)$$\end{document}-Laplacian Operator

被引:0
作者
A. Ghanmi
L. Mbarki
K. Saoudi
机构
[1] Université de Tunis El Manar,
[2] University of Imam Abdulrahman Bin Faisal,undefined
[3] University of Imam Abdulrahman Bin Faisal,undefined
关键词
-Laplacian operator; variational methods; -Kirchhoff problem;
D O I
10.1134/S0001434623010200
中图分类号
学科分类号
摘要
引用
收藏
页码:172 / 181
页数:9
相关论文
共 40 条
[1]  
Acerbi E.(2001)Regularity results for a class of functionals with nonstandard growth Arch. Rational Mech. Anal. 156 121-140.
[2]  
Mingione G.(1883)Mechanik Teubner, Leipzig 0 0-346
[3]  
Kirchhoff G.(1978)On some questions in boundary value problems of mathematical physics North-Holland Math. Stud. 0 284-1096
[4]  
Lions J. L.(2009)On an elliptic equation of Kirchhoff-type with a potential asymptotically linear at infinity Math. Comput. Modelling 0 1089-330
[5]  
Bensedik A.(1996)On the well-posedness of the Kirchhoff string Trans. Amer. Math. Soc. 0 305-822
[6]  
Bouchekif M.(2010)Multiplicity of nontrivial solutions for Kirchhoff type problems Boundary Value Problems. 0 Article ID 268946, 13 pages-298
[7]  
Arosio A.(2009)On a Appl. Math. Letters 0 819-13
[8]  
Panizzi S.(2014)-Kirchhoff equation via Krasnoselskii’s genus C. R. Acad. Sci. Paris, Ser. I 0 295-284
[9]  
Cheng B.(2017)On a J. Math. Phys. 0 0-1158
[10]  
Wu X.(2012)-Kirchhoff problem involving a critical nonlinearity Electron. J. Qual. Theory Differ. Equ. 0 1-284