Global Attractors and Robustness of the Boissonade System

被引:0
作者
Junyi Tu
机构
[1] University of South Florida,Department of Mathematics and Statistics
来源
Journal of Dynamics and Differential Equations | 2015年 / 27卷
关键词
Reaction-diffusion system; Global attractors; Asymptotic compactness; Hausdorff dimension; Uniform dissipativity; Upper-semicontinuity; 37L30; 35B40; 35B41; 35K55; 35K57; 80A32; 92B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, the existence and properties of a global attractor for the weak solution semiflow of the Boissonade system are proved. A parameter adjusting and grouping estimation method is developed to show the absorbing property and asymptotic compactness of the solution trajectories of this reaction-diffusion system with quadratic and cubic nonlinearity. The upper-semicontinuity of the global attractors in the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} product space for the solution semiflow with respect to the quadratic term coefficient converging to zero is proved. The barrier of the perturbed singularity between zero quadratic term coefficient and non-zero one is overcome by the uniform adjusting parameter.
引用
收藏
页码:187 / 211
页数:24
相关论文
共 9 条
[1]  
Dufied V(1996)Dynamics of turing pattern monelayers close to onset Phys. Rev. E 53 4883-4892
[2]  
Boissonade J(1975)A dynamical system generated by the Navier-Stokes equations J. Soivet Math. 3 458-479
[3]  
Ladyzhenskaya OA(1979)Some analytic and geometric properties of the solutions of the evolution navier stokes equations J. Math. Pures Appl. 9 339-368
[4]  
Foias C(1983)Regular attarctors of semigroups and evolution equations J. Math. Pures Appl. 62 441-491
[5]  
Teman R(2011)Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems Commun. Pure Appl. Anal. 10 1415-1445
[6]  
Babin AV(2012)Global dynamics of the oregonator system Math Methods Appl Sci 35 398-416
[7]  
Vishik MI(undefined)undefined undefined undefined undefined-undefined
[8]  
You Y(undefined)undefined undefined undefined undefined-undefined
[9]  
You Y(undefined)undefined undefined undefined undefined-undefined