On convergent sequences in dual groups

被引:0
作者
M. V. Ferrer
S. Hernández
M. Tkachenko
机构
[1] Universitat Jaume I,Departamento de Matemáticas
[2] Universidad Autónoma Metropolitana,Departamento de Matemáticas
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2020年 / 114卷
关键词
Reflexive; Precompact; Pseudocompact; Baire property; Convergent sequence; Primary 43A40; 22D35; Secondary 22C05; 54E52; 54C10;
D O I
暂无
中图分类号
学科分类号
摘要
We provide some characterizations of precompact abelian groups G whose dual group Gp∧\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_p^\wedge $$\end{document} endowed with the pointwise convergence topology on elements of G contains a nontrivial convergent sequence. In the special case of precompact abelian torsion groups G, we characterize the existence of a nontrivial convergent sequence in Gp∧\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_p^\wedge $$\end{document} by the following property of G: No infinite Hausdorff quotient group of G is countable. Also, we present an example of a dense subgroup G of the compact metrizable group Z(2)ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}(2)^\omega $$\end{document} such that G is of the first category in itself, has measure zero, but the dual group Gp∧\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_p^\wedge $$\end{document} does not contain infinite compact subsets. This complements a result of J.E. Hart and K. Kunen (2005) on convergent sequences in dual groups. Making use of the group G we construct the first example of a precompact Pontryagin reflexive abelian group which is of the first Baire category.
引用
收藏
相关论文
共 39 条
  • [1] Ardanza-Trevijano S(2012)Precompact non-compact reflexive Abelian groups Forum Math. 24 289-302
  • [2] Chasco MJ(2012)Pontryagin duality in the class of precompact Abelian groups and the Baire property J. Pure Appl. Algebra 216 2636-2647
  • [3] Domínguez X(2017)Duality properties of bounded torsion topological abelian groups J. Math. Anal. Appl. 448 968-981
  • [4] Tkachenko MG(1964)Topologies induced by groups of character Fund. Math. 55 283-291
  • [5] Bruguera M(1993)The Bohr compactification, modulo a metrizable subgroup Fund. Math. 143 119-136
  • [6] Tkachenko M(2013)On characterized subgroups of compact abelian groups Topol. Appl. 160 2427-2442
  • [7] Chasco MJ(2014)Characterizing sequences for precompact group topologies J. Math. Anal. Appl. 412 505-519
  • [8] Domínguez X(1995)Prime subspaces in free topological groups Topol. Appl. 62 163-171
  • [9] Tkachenko M(1977)A compact space having the cardinality of the continuum with no convergent sequences Math. Proc. Cambridge Philos. Soc. 81 177-181
  • [10] Comfort WW(1985)Continuity of homomorphisms on a Baire group Proc. Am. Math. Soc. 93 367-368