Higgs boson pair production at NNLO with top quark mass effects

被引:0
作者
M. Grazzini
G. Heinrich
S. Jones
S. Kallweit
M. Kerner
J. M. Lindert
J. Mazzitelli
机构
[1] Universität Zürich,Physik
[2] Max Planck Institute for Physics,Institut
[3] CERN,TH Division, Physics Department
[4] Durham University,Institute for Particle Physics Phenomenology
来源
Journal of High Energy Physics | / 2018卷
关键词
NLO Computations; QCD Phenomenology;
D O I
暂无
中图分类号
学科分类号
摘要
We consider QCD radiative corrections to Higgs boson pair production through gluon fusion in proton collisions. We combine the exact next-to-leading order (NLO) contribution, which features two-loop virtual amplitudes with the full dependence on the top quark mass Mt, with the next-to-next-to-leading order (NNLO) corrections computed in the large-Mt approximation. The latter are improved with different reweighting techniques in order to account for finite-Mt effects beyond NLO. Our reference NNLO result is obtained by combining one-loop double-real corrections with full Mt dependence with suitably reweighted real-virtual and double-virtual contributions evaluated in the large-Mt approximation. We present predictions for inclusive cross sections in pp collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13, 14, 27 and 100 TeV and we discuss their uncertainties due to missing Mt effects. Our approximated NNLO corrections increase the NLO result by an amount ranging from +12% at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s}=13 $$\end{document} TeV to +7% at s=100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s}=100 $$\end{document} TeV, and the residual uncertainty of the inclusive cross section from missing Mt effects is estimated to be at the few percent level. Our calculation is fully differential in the Higgs boson pair and the associated jet activity: we also present predictions for various differential distributions at s=14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s}=14 $$\end{document} and 100 TeV, and discuss the size of the missing Mt effects, which can be larger, especially in the tails of certain observables. Our results represent the most advanced perturbative prediction available to date for this process.
引用
收藏
相关论文
共 130 条
[1]  
Baglio J(2013)The measurement of the Higgs self-coupling at the LHC: theoretical status JHEP 04 151-301
[2]  
Djouadi A(2014)Higgs pair production at the LHC with NLO and parton-shower effects Phys. Lett. B 732 142-491
[3]  
Gröber R(2014)An Indirect Model-Dependent Probe of the Higgs Self-Coupling Phys. Rev. D 90 094-undefined
[4]  
Mühlleitner MM(2016) → JHEP 10 080-undefined
[5]  
Quevillon J(2016) → JHEP 12 083-undefined
[6]  
Spira M(2017)Probing the Higgs self coupling via single Higgs production at the LHC JHEP 07 069-undefined
[7]  
Frederix R(2017)Constraints on the trilinear Higgs coupling from vector boson fusion and associated Higgs production at the LHC JHEP 09 887-undefined
[8]  
McCullough M(2017)A global view on the Higgs self-coupling Eur. Phys. J. C 77 155-undefined
[9]  
Gorbahn M(2017)Trilinear Higgs coupling determination via single-Higgs differential measurements at the LHC JHEP 04 269-undefined
[10]  
Haisch U(2017)Constraints on the trilinear Higgs self coupling from precision observables Phys. Rev. D 95 282-undefined