Optimal error estimates of the local discontinuous Galerkin methods based on generalized fluxes for 1D linear fifth order partial differential equations

被引:0
|
作者
Hui Bi
Yixin Chen
机构
[1] Harbin University of Science and Technology,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2022卷
关键词
Local discontinuous Galerkin methods; Fifth order partial differential equations; Global Gauss–Radau projection; Error estimates;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the error estimates of local discontinuous Galerkin methods based on the generalized numerical fluxes for the one-dimensional linear fifth order partial differential equations. We use a newly developed global Gauss–Radau projection to obtain the linear type of optimal error estimates. The numerical experiments show that the scheme coupled with the third order implicit Runge–Kutta method can achieve the optimal (k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(k+1)$\end{document}th order of accuracy.
引用
收藏
相关论文
共 50 条