A Linearly Elastic Shell over an Obstacle: The Flexural Case

被引:0
作者
Alain Léger
Bernadette Miara
机构
[1] Aix-Marseille Univ.,Laboratoire de Mécanique et d’Acoustique, LMA, CNRS
[2] Centrale Marseille,undefined
[3] Université Paris-Est,undefined
来源
Journal of Elasticity | 2018年 / 131卷
关键词
Asymptotic analysis; Bending; Flexural shells; Obstacle problem; Signorini conditions; 74B99; 74K25; 74M15;
D O I
暂无
中图分类号
学科分类号
摘要
We study the equilibrium of a three-dimensional solid having a uniform thickness 2ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2 \varepsilon $\end{document} along a middle surface which satisfies the usual assumptions of shell theory. The solid is linearly elastic at small strains and is submitted to unilateral contact conditions with an obstacle on a part of its boundary. When ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon $\end{document} tends to zero, the three-dimensional domain tends to a two-dimensional one, so that the contact conditions pass from a part of the boundary to the interior of the domain. We restrict our attention to the so-called bending case, that is when the shell undergoes only inextensional deformations. As a major difference with the case of a shallow shell, we get in general a coupling between the three components of the displacement in the contact conditions. The work is closed by explicit examples showing the corresponding variation of the non-penetrability condition along the surface of the shell and by comments about the model and the remaining difficulties.
引用
收藏
页码:19 / 38
页数:19
相关论文
共 32 条
  • [1] Anicic S.(2004)The infinitesimal rigid displacement lemma in Lipschitz co-ordinates and application to shells with minimal regularity Math. Methods Appl. Sci. 27 1283-1299
  • [2] Le Dret H.(2010)Frictional contact problems for thin elastic structures and weak solution of sweeping process Arch. Ration. Mech. Anal. 198 789-833
  • [3] Raoult A.(1996)Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations Arch. Ration. Mech. Anal. 136 119-161
  • [4] Ballard P.(1996)Asymptotic analysis of linearly elastic shells. III. Justification of Koiter’s shell equations Arch. Ration. Mech. Anal. 136 191-200
  • [5] Ciarlet P.G.(2001)On Korn’s inequalities in curvilinear coordinates Math. Models Methods Appl. Sci. 11 1379-1391
  • [6] Lods V.(1992)Justification of the two-dimensional equations of a linearly elastic shallow shell Commun. Pure Appl. Math. 45 327-360
  • [7] Ciarlet P.G.(1996)Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations Arch. Ration. Mech. Anal. 136 163-190
  • [8] Lods V.(1993)Un résultat de différentialité dans un problème d’obstacle pour des poutres en flexion C. R. Acad. Sci. 316, I 749-754
  • [9] Ciarlet P.G.(1963)Sul problema elastostatico di Signorini con ambigue condizioni al contorno Atti R. Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., Ser. VIII 34 138-142
  • [10] Mardaré S.(2008)Mathematical justification of the obstacle problem in the case of a shallow shell J. Elast. 90 241-257