Soft and hard interactions in p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar p$$ \end{document} collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt s = 1800$$ \end{document} and 630 GeV

被引:0
作者
F. Rimondi
机构
[1] Universitaá di Bologna,Dipartimento di Fisica and Istituto Nazionale di Fisica Nucleare
关键词
Elementary Particle; Transverse Momentum; Distinct Difference; Minimum Bias; Hard Interaction;
D O I
10.1134/1.1644016
中图分类号
学科分类号
摘要
We present a study of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar p$$ \end{document} collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt s = 1800$$ \end{document} and 630 GeV collected using a minimum bias trigger by the CDF experiment in which the data set is divided into two classes corresponding to “soft” and “hard” interactions. For each subsample, the analysis includes measurements of the multiplicity, transverse momentum (pT) spectrum, and the average pT and event-by-event pT dispersion as a function of multiplicity. A comparison of results shows distinct differences in the behavior of the two samples as a function of the center-of-mass (CM) energy. We find evidence that the properties of the soft sample are invariant as a function of CM energy.
引用
收藏
页码:130 / 139
页数:9
相关论文
共 30 条
[1]  
Ansari R.(1987)undefined Z. Phys. C 36 175-undefined
[2]  
Sjöstrand T.(1987)undefined Phys. Rev. D 36 2019-undefined
[3]  
van Zijl M.(1987)undefined Phys. Rev. D 36 2019-undefined
[4]  
Sjöstrand T.(1988)undefined Nucl. Instrum. Methods Phys. Res. A 271 387-undefined
[5]  
van Zijl M.(1988)undefined Nucl. Instrum. Methods Phys. Res. A 268 75-undefined
[6]  
Abe F.(1988)undefined Nucl. Instrum. Methods Phys. Res. A 267 272-undefined
[7]  
Snider F.(1997)undefined Phys. Rev. D 56 3811-undefined
[8]  
Balka F.(1988)undefined Phys. Rev. Lett. 61 1819-undefined
[9]  
Abe F.(1996)undefined Phys. Rev. Lett. 76 2015-undefined
[10]  
Abe F.(1972)undefined Nucl. Phys. B 40 317-undefined