Projections of modular forms on Eisenstein series and its application to Siegel’s formula

被引:0
作者
Zafer Selcuk Aygin
机构
[1] University of Calgary,Department of Mathematics and Statistics
来源
The Ramanujan Journal | 2022年 / 57卷
关键词
Dedekind eta function; Theta functions; Eisenstein series; Modular forms; Cusp forms; Fourier coefficients; 11F11; 11F20; 11F27; 11E20; 11E25; 11F30;
D O I
暂无
中图分类号
学科分类号
摘要
Let k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document} and N be positive integers and let χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} be a Dirichlet character modulo N. Let f(z) be a modular form in Mk(Γ0(N),χ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_k(\Gamma _0(N),\chi )$$\end{document}. Then we have a unique decomposition f(z)=Ef(z)+Sf(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=E_f(z)+S_f(z)$$\end{document}, where Ef(z)∈Ek(Γ0(N),χ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_f(z) \in E_k(\Gamma _0(N),\chi )$$\end{document} and Sf(z)∈Sk(Γ0(N),χ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_f(z) \in S_k(\Gamma _0(N),\chi )$$\end{document}. In this paper, we give an explicit formula for Ef(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_f(z)$$\end{document} in terms of Eisenstein series whose coefficients are sum of divisors function. Then we apply our result to certain families of eta quotients and to representations of positive integers by 2k–ary positive definite quadratic forms in order to give an alternative version of Siegel’s formula for the weighted average number of representations of an integer by quadratic forms in the same genus. Our formula for the latter is in terms of sum of divisors function and does not involve computation of local densities.
引用
收藏
页码:1223 / 1252
页数:29
相关论文
共 9 条
  • [1] Aygin ZS(2018)Extensions of Ramanujan–Mordell formula with coefficients J. Math. Anal. Appl. 465 690-702
  • [2] Aygin ZS(2019) and J. Number Theory 195 358-375
  • [3] Cooper S(2017)On Eisenstein series in J. Math. Anal. Appl. 446 568-579
  • [4] Kane B(1917) and their applications Quart. J. Pure Appl. Math. 48 93-104
  • [5] Ye D(1916)Analogues of the Ramanujan–Mordell theorem Trans. Cambridge Philos. Soc. 22 159-184
  • [6] Mordell LJ(1935)On the representations of numbers as a sum of Ann. Math. 36 527-606
  • [7] Ramanujan S(1998) squares J. Number Theory 72 309-356
  • [8] Siegel CL(undefined)On certain arithmetical functions undefined undefined undefined-undefined
  • [9] Yang T(undefined)Uber die analytische theorie der quadratischen formen undefined undefined undefined-undefined