L-functions and sum-free sets

被引:0
作者
T. Schoen
I. D. Shkredov
机构
[1] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
[2] Steklov Mathematical Institute,undefined
[3] IITP RAS,undefined
[4] MIPT,undefined
来源
Acta Mathematica Hungarica | 2020年 / 161卷
关键词
sum-free set; L-function; multiplicative subgroup; 11B13; 11B50; 11B75; 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
For set A⊂Fp∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\subset \mathbb{F}_p^*$$\end{document} define by sf(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{sf}(A)$$\end{document} the size of the largest sum-free subset of A. Alon and Kleitman [3] showed that sf(A)≥|A|/3+O(|A|/p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{sf} (A) \ge |A|/3+O(|A|/p)$$\end{document}. We prove that if sf(A)-|A|/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{sf}(A)-|A|/3$$\end{document} is small then the set A must be uniformly distributed on cosets of each large multiplicative subgroup. Our argument relies on irregularity of distribution of multiplicative subgroups on certain intervals in Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}p$$\end{document}.
引用
收藏
页码:427 / 442
页数:15
相关论文
共 15 条
[1]  
Alon N(2014)Additive patterns in multiplicative subgroups GAFA 24 721-739
[2]  
Bourgain J(1997)Estimates related to sumfree subsets of sets of integers Israel J. Math. 97 71-92
[3]  
Bourgain J(2002)A polynomial bound in Freiman's theorem Duke Math. J. 113 399-419
[4]  
Chang M-C(2015)Følner sequences and sum-free sets Bull. Lond. Math. Soc. 47 21-28
[5]  
Eberhard S(2014)Sets of integers with no large sum-free subset Ann. Math. 180 621-652
[6]  
Eberhard S(1974)A simple proof of Siegel's theorem Proc. Nat. Acad. Sci. 71 1055-1055
[7]  
Green B(1976)The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3 624-663
[8]  
Manners F(2005)A Szemerédi-type regularity lemma in abelian groups GAFA 15 340-376
[9]  
Goldfeld DM(2003)Some constructions in the inverse spectral theory of cyclic groups Comb. Probab. Comp. 12 127-138
[10]  
Goldfeld DM(1986)Heegner points and derivatives of L-series Invent. Math. 84 225-320