Divide-and-Conquer Solver in Tensor-Train Format for d-Dimensional Time-Space Fractional Diffusion Equations

被引:0
作者
Yun-Chi Huang
Lot-Kei Chou
Siu-Long Lei
机构
[1] Shantou University,Department of Mathematics
[2] University of Macau,Department of Mathematics
[3] Avenida da Universidade,undefined
来源
Journal of Scientific Computing | 2023年 / 96卷
关键词
High dimension; Time-space fractional diffusion equations; Alternating direction implicit scheme; Divide-and-conquer; Tensor-Train format; 65M06; 65M12; 65G50; 26A33; 41-04; 41A63;
D O I
暂无
中图分类号
学科分类号
摘要
A divide-and-conquer solver coupled with Tensor-Train (TT) format is proposed for solving the d-dimensional time-space fractional diffusion equations with alternating direction implicit finite difference scheme. In contrast to the complexity and storage of divide-and-conquer solver in full storage format, which grows at least exponentially with dimension d, complexity and storage of the proposed solver are ONMlogM+rr+(d-1)r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}\left( NM\left( \log M+r\right) \left( r+(d-1)r^2\right) \right. $$\end{document}+Nlog2N·r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left. +N\log ^2 N\cdot r \right) $$\end{document} and OMr+(d-1)r2+Nr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}\left( M\left( r+(d-1)r^2\right) +Nr \right) $$\end{document} with acceleration by an efficient approximated Toeplitz inversion, where M, N are numbers of spatial and temporal grid points and r is the TT-ranks of related TT format data. Hence they grow slowly with dimension d if the TT-ranks r is low. For reducing the increase of TT-ranks after certain TT operations, TT rounding is performed with introduced error, which is analyzed for giving a criterion for preserving convergence rate of the numerical scheme. The accuracy and efficiency of the proposed solver is illustrated by numerical experiments with dimension d up to 20 for case of low TT-ranks initial conditions and source terms.
引用
收藏
相关论文
共 128 条
  • [1] Bertaccini D(2019)Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation Appl. Math. Lett. 95 92-97
  • [2] Durastante F(2016)Low-rank solvers for fractional differential equations Electron. Trans. Numer. Anal. 45 107-132
  • [3] Breiten T(1996)Conjugate gradient methods for Toeplitz systems SIAM Rev. 38 427-482
  • [4] Simoncini V(2009)Finite difference approximations for the fractional Fokker–Planck equation Appl. Math. Model. 33 256-273
  • [5] Stoll M(2019)Tensor-train format solution with preconditioned iterative method for high dimensional time-dependent space-fractional diffusion equations with error analysis J. Sci. Comput. 80 1731-1763
  • [6] Chan RH(2021)Finite volume approximation with ADI scheme and low-rank solver for high dimensional spatial distributed-order fractional diffusion equations Comput. Math. Appl. 89 116-126
  • [7] Ng MK(2016)Fast tensor product solvers for optimization problems with fractional differential equations as constraints Appl. Math. Comput. 273 604-623
  • [8] Chen S(2019)A preconditioned fast parareal finite difference method for space-time fractional partial differential equation J. Sci. Comput. 78 1724-1743
  • [9] Liu F(2017)A divide-and-conquer fast finite difference method for space-time fractional partial differential equation Comput. Math. Appl. 73 1233-1242
  • [10] Zhuang P(2021)Fast implicit difference schemes for time-space fractional diffusion equations with the integral fractional Laplacian Math. Methods Appl. Sci. 44 441-463