Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities

被引:0
作者
Jeanjean L. [1 ]
Tanaka K. [2 ]
机构
[1] Equipe de Mathématiques, UMR CNRS 6623, Universite de Franche-Comte, 25030 Besançon
[2] Department of Mathematics, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555
关键词
Local Minimum; State Solution; Variational Method; Potential Versus; Elliptic Problem;
D O I
10.1007/s00526-003-0261-6
中图分类号
学科分类号
摘要
We consider a class of equations of the form -ε2 Δu + V (x)u = f(u), u ∈ H1 (RN). By variational methods, we show the existence of families of positive solutions concentrating around local minima of the potential V(x), as ε → 0. We do not require uniqueness of the ground state solutions of the associated autonomous problems nor the monotonicity of the function ξ → f(ξ)/ξ. We deal with asymptotically linear as well as superlinear nonlinearities.
引用
收藏
页码:287 / 318
页数:31
相关论文
共 28 条
[1]  
Ambrosetti A., Badiale M., Cingolani S., Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 140, pp. 285-300, (1997)
[2]  
Berestycki H., Lions P.L., Nonlinear scalar field equations I, Arch. Rat. Mech. Anal., 82, pp. 313-346, (1983)
[3]  
Berestycki H., Gallouet T., Kavian O., Equations de champs scalaires euclidiens non linéaires dans le plan, C.R. Acad. Sci
[4]  
Paris Ser. I Math., 297, pp. 307-310, (1983)
[5]  
Brezis H., Analyse Fonctionnelle, (1983)
[6]  
Del Pino M., Felmer P., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. PDE, 4, pp. 121-137, (1996)
[7]  
Del Pino M., Felmer P., Multi-peak bound states of nonlinear Schrödinger equations, Ann. IHP, Analyse Nonlineaire, 15, pp. 127-149, (1998)
[8]  
Del Pino M., Felmer P., Semi-classical states of nonlinear Schrödinger equations: A variational reduction method, Math. Ann., 324, 1, pp. 1-32, (2002)
[9]  
Del Pino M., Felmer P., Tanaka K., An elementary construction of complex patterns in nonlinear Schrödinger equations, Nonlinearity, 15, 5, pp. 1653-1671, (2002)
[10]  
Floer A., Weinstein A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 3, pp. 397-408, (1986)