Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms

被引:0
作者
B. Andrés-Toro
J. M. Girón-Sierra
P. Fernández-Blanco
J. A. López-Orozco
E. Besada-Portas
机构
[1] Complutense University of Maddrid,Department of Computer Architecture and System Engineering, Physical Sciences
来源
Journal of Zhejiang University-SCIENCE A | 2004年 / 5卷 / 4期
关键词
Multiobjective optimization; Genetic algorithms; Industrial control; Multivariable control systems; Fermentation processes; A; Q815; TP278;
D O I
10.1631/BF02851182
中图分类号
学科分类号
摘要
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation. Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results. The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs). Successful finding of optimal ways to drive these processes were reported. Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.
引用
收藏
页码:378 / 389
页数:11
相关论文
共 63 条
[1]  
De Andrés Toro B.(1997)Evolución del contenido de azúcares durante la fermentación cervecera industrial Alimentación, equiposy tecnología 4 59-71
[2]  
Cámara Hurtado M.(1998)A kinetic model for beer fermentation under industrial operational conditions Mathematics and Computer Simulation 48 65-74
[3]  
Díez Marqués C.(1999)Modelizacióny Control de la fermentación industrial de la Cerveza. Estudio experimental Alimentación, Equiposy Tecnología 4 93-99
[4]  
Fernández Conde C.(1986)On-line Estimation of microbial specific growth rates Automatica 22 705-709
[5]  
Girón Sierra J.M.(2000)An updated survey of GA-based multiobjective optimization techniques ACM Computing Surveys 32 109-143
[6]  
Torija Isasa M.T.(1984)Adaptive identification and control algorithms for nonlinear bacterial growth systems Automatica 20 621-634
[7]  
De Andrés Toro B.(1992)A simple observer for nonlinear systems: applications to Bioreactors IEEE T. Autom. Control 37 875-880
[8]  
Girón-Sierra J.M.(1988)Optimal temperature control for batch beer fermentation Biotech. and Bioeng. 31 224-234
[9]  
López Orozco J.A.(1994)A flavour model for beer fermentation J. Ins. Brewing 100 321-329
[10]  
Peinado J.M.(1987)The control of fed-batch fermentation processes—a survey Automatica 23 691-705