Existence and multiplicity of solutions to p-Laplacian equations on graphs

被引:0
作者
Mengqiu Shao
机构
[1] Qufu Normal University,School of Mathematical Sciences
来源
Revista Matemática Complutense | 2024年 / 37卷
关键词
-Laplacian equation; Locally finite graph; Multiple solutions; Variational methods; 35R02; 35Q55; 35A15; 35J92;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the existence of multiple solutions to the nonlinear p-Laplacian equation -Δpu+h(x)|u|p-2u=f(x,u)+g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta _{p} u +h(x)|u|^{p-2}u= f(x,u)+g(x) \end{aligned}$$\end{document}on the locally finite graph G, where Δp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{p}$$\end{document} is the discrete p-Laplacian on graphs, p≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 2$$\end{document}. Under more general conditions, we prove that the p-Laplacian equation admits at least two nontrivial different solutions by using the variational methods and the new analytical techniques. Our results extend some related works.
引用
收藏
页码:185 / 203
页数:18
相关论文
共 37 条
[1]  
Alves C(2009)On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in J. Differ. Equ. 246 1288-1311
[2]  
Figueiredo G(1996)Multiple positive solutions of nonhomogeneous semilinear elliptic equations in Proc. Roy. Soc. Edinburgh 126A 443-463
[3]  
Cao D(1986)On the existence of positive entire solutions of a semilinear elliptic equation Arch. Ration. Mech. Anal. 31 283-308
[4]  
Zhou H(1997)Two positive solutions for a class of nonhomogeneous elliptic equations Differ. Integral Equ. 10 609-624
[5]  
Ding W(1983)Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents Comm. Pure Appl. Math. 36 437-477
[6]  
Ni W(2018)Multiplicity of solutions to Schrödinger-Poisson system with concave-convex nonlinearities Appl. Math. Lett. 83 212-218
[7]  
Jeanjean L(2000)Multiple positive solutions for a nonlinear Schrödinger equation Z. Angew. Math. Phys. 51 366-384
[8]  
Brézis H(2003)Multiplicity of positive solutions of a nonlinear Schrödinger equation Manuscr. Math. 112 109-135
[9]  
Nirenberg L(2017)Existence of positive solutions to some nonlinear equations on locally finite graphs Sci. China Math. 60 1311-1324
[10]  
Shao M(1976)Generalized extremal length of an infinite network Hiroshima Math. J. 6 95-111