Penalized least squares approximation methods and their applications to stochastic processes

被引:0
|
作者
Takumi Suzuki
Nakahiro Yoshida
机构
[1] University of Tokyo,Graduate School of Mathematical Sciences
[2] Japan Science and Technology Agency,CREST
来源
Japanese Journal of Statistics and Data Science | 2020年 / 3卷
关键词
Variable selection; Least squares approximation; Cox process; Diffusion type process;
D O I
暂无
中图分类号
学科分类号
摘要
We construct an objective function that consists of a quadratic approximation term and an Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} penalty (0<q≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0<q\le 1)$$\end{document} term. Thanks to the quadratic approximation, we can deal with various kinds of loss functions into a unified way, and by taking advantage of the Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} penalty term, we can simultaneously execute variable selection and parameter estimation. In this article, we show that our estimator has oracle properties, and even better property. We also treat stochastic processes as applications.
引用
收藏
页码:513 / 541
页数:28
相关论文
共 50 条
  • [41] Penalized profile least squares-based statistical inference for varying coefficient partially linear errors-in-variables models
    Guo-liang Fan
    Han-ying Liang
    Li-xing Zhu
    ScienceChina(Mathematics), 2018, 61 (09) : 139 - 156
  • [42] Penalized profile least squares-based statistical inference for varying coefficient partially linear errors-in-variables models
    Guo-liang Fan
    Han-ying Liang
    Li-xing Zhu
    Science China Mathematics, 2018, 61 : 1677 - 1694
  • [43] A novel image encryption algorithm based on piecewise linear chaotic maps and least squares approximation
    Ghebleh, M.
    Kanso, A.
    Stevanovic, D.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (06) : 7305 - 7326
  • [44] A novel image encryption algorithm based on piecewise linear chaotic maps and least squares approximation
    M. Ghebleh
    A. Kanso
    D. Stevanović
    Multimedia Tools and Applications, 2018, 77 : 7305 - 7326
  • [45] Penalized profile least squares-based statistical inference for varying coefficient partially linear errors-in-variables models
    Fan, Guo-liang
    Liang, Han-ying
    Zhu, Li-xing
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1677 - 1694
  • [46] INTRODUCTION TO THE GAUSSIAN LEAST-SQUARES APPROXIMATION AND ITS APPLICATION IN SIGNAL-PROCESSING AND SYSTEM MODELING
    SCHLATTER, M
    EICHLER, J
    SIGNAL PROCESSING, 1979, 1 (03) : 211 - 225
  • [47] Online quality estimation in chemical processes with random subspace deep partial least squares model
    Xu, Ouguan
    Yang, Zeyu
    Ge, Zhiqiang
    CHEMICAL ENGINEERING SCIENCE, 2025, 306
  • [48] Adaptive two-layer ReLU neural network: I. Best least-squares approximation
    Liu, Min
    Cai, Zhiqiang
    Chen, Jingshuang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 113 : 34 - 44
  • [49] Multivariate fault isolation of batch processes via variable selection in partial least squares discriminant analysis
    Yan, Zhengbing
    Kuang, Te-Hui
    Yao, Yuan
    ISA TRANSACTIONS, 2017, 70 : 389 - 399
  • [50] Sparse partial least-squares regression and its applications to high-throughput data analysis
    Lee, Donghwan
    Lee, Woojoo
    Lee, Youngjo
    Pawitan, Yudi
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 109 (01) : 1 - 8