Penalized least squares approximation methods and their applications to stochastic processes

被引:0
|
作者
Takumi Suzuki
Nakahiro Yoshida
机构
[1] University of Tokyo,Graduate School of Mathematical Sciences
[2] Japan Science and Technology Agency,CREST
来源
Japanese Journal of Statistics and Data Science | 2020年 / 3卷
关键词
Variable selection; Least squares approximation; Cox process; Diffusion type process;
D O I
暂无
中图分类号
学科分类号
摘要
We construct an objective function that consists of a quadratic approximation term and an Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} penalty (0<q≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0<q\le 1)$$\end{document} term. Thanks to the quadratic approximation, we can deal with various kinds of loss functions into a unified way, and by taking advantage of the Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} penalty term, we can simultaneously execute variable selection and parameter estimation. In this article, we show that our estimator has oracle properties, and even better property. We also treat stochastic processes as applications.
引用
收藏
页码:513 / 541
页数:28
相关论文
共 50 条
  • [31] Shape preserving least-squares approximation by polynomial parametric spline curves
    Juttler, B
    COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (08) : 731 - 747
  • [32] Modeling thermophysiological comfort properties of ladies' scarves using least squares approximation
    Nazar, Rabia
    Iftikhar, Fatima
    Sheikh, Umber
    Naeem, Muhammad Salman
    Nawaz, Hafiza Hifza
    Khan, Muhammad Qamar
    Umar, Muhammad
    TEXTILE RESEARCH JOURNAL, 2024,
  • [33] Maximal volume matrix cross approximation for image compression and least squares solution
    Allen, Kenneth
    Lai, Ming-Jun
    Shen, Zhaiming
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (05)
  • [34] Comparison of variable selection methods in partial least squares regression
    Mehmood, Tahir
    Saebo, Solve
    Liland, Kristian Hovde
    JOURNAL OF CHEMOMETRICS, 2020, 34 (06)
  • [35] Combined l1 and Greedy l0 Penalized Least Squares for Linear Model Selection
    Pokarowski, Piotr
    Mielniczuk, Jan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 961 - 992
  • [36] Worst-case Recovery Guarantees for Least Squares Approximation Using Random Samples
    Kaemmerer, Lutz
    Ullrich, Tino
    Volkmer, Toni
    CONSTRUCTIVE APPROXIMATION, 2021, 54 (02) : 295 - 352
  • [37] Worst-case Recovery Guarantees for Least Squares Approximation Using Random Samples
    Lutz Kämmerer
    Tino Ullrich
    Toni Volkmer
    Constructive Approximation, 2021, 54 : 295 - 352
  • [38] Least squares approximation method for the solution of Hammerstein-Volterra delay integral equations
    Mosleh, Maryam
    Otadi, Mahmood
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 105 - 110
  • [39] HIGH-DIMENSIONAL GENERALIZATIONS OF ASYMMETRIC LEAST SQUARES REGRESSION AND THEIR APPLICATIONS
    Gu, Yuwen
    Zou, Hui
    ANNALS OF STATISTICS, 2016, 44 (06) : 2661 - 2694
  • [40] A unifying theory of least-squares Pade model reduction methods
    Smith, ID
    Lucas, TN
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 1996, 210 (02) : 95 - 102