Penalized least squares approximation methods and their applications to stochastic processes

被引:0
|
作者
Takumi Suzuki
Nakahiro Yoshida
机构
[1] University of Tokyo,Graduate School of Mathematical Sciences
[2] Japan Science and Technology Agency,CREST
来源
Japanese Journal of Statistics and Data Science | 2020年 / 3卷
关键词
Variable selection; Least squares approximation; Cox process; Diffusion type process;
D O I
暂无
中图分类号
学科分类号
摘要
We construct an objective function that consists of a quadratic approximation term and an Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} penalty (0<q≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0<q\le 1)$$\end{document} term. Thanks to the quadratic approximation, we can deal with various kinds of loss functions into a unified way, and by taking advantage of the Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} penalty term, we can simultaneously execute variable selection and parameter estimation. In this article, we show that our estimator has oracle properties, and even better property. We also treat stochastic processes as applications.
引用
收藏
页码:513 / 541
页数:28
相关论文
共 50 条