Penalized least squares approximation methods and their applications to stochastic processes
被引:0
|
作者:
Takumi Suzuki
论文数: 0引用数: 0
h-index: 0
机构:University of Tokyo,Graduate School of Mathematical Sciences
Takumi Suzuki
Nakahiro Yoshida
论文数: 0引用数: 0
h-index: 0
机构:University of Tokyo,Graduate School of Mathematical Sciences
Nakahiro Yoshida
机构:
[1] University of Tokyo,Graduate School of Mathematical Sciences
[2] Japan Science and Technology Agency,CREST
来源:
Japanese Journal of Statistics and Data Science
|
2020年
/
3卷
关键词:
Variable selection;
Least squares approximation;
Cox process;
Diffusion type process;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We construct an objective function that consists of a quadratic approximation term and an Lq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^q$$\end{document} penalty (0<q≤1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(0<q\le 1)$$\end{document} term. Thanks to the quadratic approximation, we can deal with various kinds of loss functions into a unified way, and by taking advantage of the Lq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^q$$\end{document} penalty term, we can simultaneously execute variable selection and parameter estimation. In this article, we show that our estimator has oracle properties, and even better property. We also treat stochastic processes as applications.
机构:
Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USAStanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
Ghili, Saman
Iaccarino, Gianluca
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USAStanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA