Penalized least squares approximation methods and their applications to stochastic processes

被引:0
|
作者
Takumi Suzuki
Nakahiro Yoshida
机构
[1] University of Tokyo,Graduate School of Mathematical Sciences
[2] Japan Science and Technology Agency,CREST
来源
Japanese Journal of Statistics and Data Science | 2020年 / 3卷
关键词
Variable selection; Least squares approximation; Cox process; Diffusion type process;
D O I
暂无
中图分类号
学科分类号
摘要
We construct an objective function that consists of a quadratic approximation term and an Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} penalty (0<q≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0<q\le 1)$$\end{document} term. Thanks to the quadratic approximation, we can deal with various kinds of loss functions into a unified way, and by taking advantage of the Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} penalty term, we can simultaneously execute variable selection and parameter estimation. In this article, we show that our estimator has oracle properties, and even better property. We also treat stochastic processes as applications.
引用
收藏
页码:513 / 541
页数:28
相关论文
共 50 条
  • [1] Penalized least squares approximation methods and their applications to stochastic processes
    Suzuki, Takumi
    Yoshida, Nakahiro
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2020, 3 (02) : 513 - 541
  • [2] Penalized least squares regression methods and applications to neuroimaging
    Bunea, Florentina
    She, Yiyuan
    Ombao, Hernando
    Gongvatana, Assawin
    Devlin, Kate
    Cohen, Ronald
    NEUROIMAGE, 2011, 55 (04) : 1519 - 1527
  • [3] Penalized partial least squares for pleiotropy
    Camilo Broc
    Therese Truong
    Benoit Liquet
    BMC Bioinformatics, 22
  • [4] Penalized partial least squares for pleiotropy
    Broc, Camilo
    Truong, Therese
    Liquet, Benoit
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [5] Penalized least squares for single index models
    Peng, Heng
    Huang, Tao
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1362 - 1379
  • [6] Penalized least squares estimation with weakly dependent data
    Fan JianQing
    Qi Lei
    Tong Xin
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (12) : 2335 - 2354
  • [8] Unified reciprocal LASSO estimation via least squares approximation
    Paul, Erina
    Mallick, Himel
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (09) : 4352 - 4362
  • [9] CONSISTENCIES AND RATES OF CONVERGENCE OF JUMP-PENALIZED LEAST SQUARES ESTIMATORS
    Boysen, Leif
    Kempe, Angela
    Liebscher, Volkmar
    Munk, Axel
    Wittich, Olaf
    ANNALS OF STATISTICS, 2009, 37 (01) : 157 - 183
  • [10] Uniform approximation on the sphere by least squares polynomials
    Woula Themistoclakis
    Marc Van Barel
    Numerical Algorithms, 2019, 81 : 1089 - 1111