In this paper we investigate the distribution of the set of values of a quadratic form Q, at integral points. In particular we are interested in the n-point correlations of the this set. The asymptotic behaviour of the counting function that counts the number of n-tuples of integral points v1,…,vn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( v_{1},\ldots ,v_{n}\right) $$\end{document}, with bounded norm, such that the n-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n-1$$\end{document} differences Qv1-Qv2,…Qvn-1-Qvn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q\left( v_{1}\right) -Q\left( v_{2}\right) ,\ldots Q\left( v_{n-1}\right) -Q\left( v_{n}\right) $$\end{document}, lie in prescribed intervals is obtained. The results are valid provided that the quadratic form has rank at least 5, is not a multiple of a rational form and n is at most the rank of the quadratic form. For certain quadratic forms satisfying Diophantine conditions we obtain a rate for the limit. The proofs are based on those in the recent preprint (Distribution of values of quadratic forms at integral points. http://www.math.uni-bielefeld.de/sfb701/files/preprints/sfb13003.pdf, 2013) of Götze and Margulis, in which they prove an ‘effective’ version of the Oppenheim conjecture. In particular, the proofs rely on Fourier analysis and estimates for certain theta series.