The n-point correlation of quadratic forms

被引:0
作者
Oliver Sargent
机构
[1] Israel Institute of Technology,Mathematics Department Technion
来源
Monatshefte für Mathematik | 2015年 / 178卷
关键词
Quadratic forms; n-Point correlations; Fourier analysis; Diophantine inequalities; 11D09; 11J25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the distribution of the set of values of a quadratic form Q, at integral points. In particular we are interested in the n-point correlations of the this set. The asymptotic behaviour of the counting function that counts the number of n-tuples of integral points v1,…,vn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( v_{1},\ldots ,v_{n}\right) $$\end{document}, with bounded norm, such that the n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} differences Qv1-Qv2,…Qvn-1-Qvn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\left( v_{1}\right) -Q\left( v_{2}\right) ,\ldots Q\left( v_{n-1}\right) -Q\left( v_{n}\right) $$\end{document}, lie in prescribed intervals is obtained. The results are valid provided that the quadratic form has rank at least 5, is not a multiple of a rational form and n is at most the rank of the quadratic form. For certain quadratic forms satisfying Diophantine conditions we obtain a rate for the limit. The proofs are based on those in the recent preprint (Distribution of values of quadratic forms at integral points. http://www.math.uni-bielefeld.de/sfb701/files/preprints/sfb13003.pdf, 2013) of Götze and Margulis, in which they prove an ‘effective’ version of the Oppenheim conjecture. In particular, the proofs rely on Fourier analysis and estimates for certain theta series.
引用
收藏
页码:259 / 297
页数:38
相关论文
共 7 条
  • [1] Dani SG(1989)Values of quadratic forms at primitive integral points Invent. Math. 98 405-424
  • [2] Margulis GA(2002)Pair correlation densities of inhomogeneous quadratic forms. II Duke Math. J. 115 409-434
  • [3] Marklof J(2008)Systems of quadratic Diophantine inequalities and the value distribution of quadratic forms Monatsh. Math. 153 233-250
  • [4] Müller W(2011)On the value distribution of positive definite quadratic forms Monatsh. Math. 162 69-88
  • [5] Müller W(1999)Pair correlation of four-dimensional flat tori Duke Math. J. 97 413-438
  • [6] VanderKam JM(2000)Correlations of eigenvalues on multi-dimensional flat tori Commun. Math. Phys. 210 203-223
  • [7] VanderKam JM(undefined)undefined undefined undefined undefined-undefined