SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data

被引:0
|
作者
Senbai Kang
Nico Borgsmüller
Monica Valecha
Jack Kuipers
Joao M. Alves
Sonia Prado-López
Débora Chantada
Niko Beerenwinkel
David Posada
Ewa Szczurek
机构
[1] University of Warsaw,Faculty of Mathematics, Informatics and Mechanics
[2] ETH Zurich,Department of Biosystems Science and Engineering
[3] SIB Swiss Institute of Bioinformatics,CINBIO
[4] Universidade de Vigo,Galicia Sur Health Research Institute (IIS Galicia Sur)
[5] SERGAS-UVIGO,Institute of Solid State Electronics E362
[6] Technische Universität Wien,Department of Pathology
[7] Hospital Álvaro Cunqueiro,Department of Biochemistry, Genetics, and Immunology
[8] Universidade de Vigo,undefined
来源
关键词
Single-cell DNA sequencing; Statistical phylogenetic models; Cell phylogeny reconstruction; Somatic variant calling; Finite-sites assumption; Acquisition bias correction;
D O I
暂无
中图分类号
学科分类号
摘要
We present SIEVE, a statistical method for the joint inference of somatic variants and cell phylogeny under the finite-sites assumption from single-cell DNA sequencing. SIEVE leverages raw read counts for all nucleotides and corrects the acquisition bias of branch lengths. In our simulations, SIEVE outperforms other methods in phylogenetic reconstruction and variant calling accuracy, especially in the inference of homozygous variants. Applying SIEVE to three datasets, one for triple-negative breast (TNBC), and two for colorectal cancer (CRC), we find that double mutant genotypes are rare in CRC but unexpectedly frequent in the TNBC samples.
引用
收藏
相关论文
共 50 条
  • [41] Detecting and phasing minor single-nucleotide variants from long-read sequencing data
    Feng, Zhixing
    Clemente, Jose C.
    Wong, Brandon
    Schadt, Eric E.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [42] Inference after latent variable estimation for single-cell RNA sequencing data
    Neufeld, Anna
    Gao, Lucy L.
    Popp, Joshua
    Battle, Alexis
    Witten, Daniela
    BIOSTATISTICS, 2023, 25 (01) : 270 - 287
  • [43] Detecting and phasing minor single-nucleotide variants from long-read sequencing data
    Zhixing Feng
    Jose C. Clemente
    Brandon Wong
    Eric E. Schadt
    Nature Communications, 12
  • [44] Erratum to: ‘Reference-free inference of tumor phylogenies from single-cell sequencing data’
    Ayshwarya Subramanian
    Russell Schwartz
    BMC Genomics, 17
  • [45] Single-cell regulatory network inference and clustering from high-dimensional sequencing data
    Vrahatis, Aristidis G.
    Dimitrakopoulos, Georgios N.
    Tasoulis, Sotiris K.
    Georgakopoulos, Spiros V.
    Plagianakos, Vassilis P.
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2782 - 2789
  • [46] Single-cell sequencing
    Nawy, Tal
    NATURE METHODS, 2014, 11 (01) : 18 - 18
  • [47] Single-cell sequencing
    Tal Nawy
    Nature Methods, 2014, 11 : 18 - 18
  • [48] Single-cell sequencing
    不详
    Nature Biotechnology, 2022, 40 (3) : 303 - 303
  • [49] Cell-connectivity-guided trajectory inference from single-cell data
    Smolander, Johannes
    Junttila, Sini
    Elo, Laura L.
    BIOINFORMATICS, 2023, 39 (09)