SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data

被引:0
|
作者
Senbai Kang
Nico Borgsmüller
Monica Valecha
Jack Kuipers
Joao M. Alves
Sonia Prado-López
Débora Chantada
Niko Beerenwinkel
David Posada
Ewa Szczurek
机构
[1] University of Warsaw,Faculty of Mathematics, Informatics and Mechanics
[2] ETH Zurich,Department of Biosystems Science and Engineering
[3] SIB Swiss Institute of Bioinformatics,CINBIO
[4] Universidade de Vigo,Galicia Sur Health Research Institute (IIS Galicia Sur)
[5] SERGAS-UVIGO,Institute of Solid State Electronics E362
[6] Technische Universität Wien,Department of Pathology
[7] Hospital Álvaro Cunqueiro,Department of Biochemistry, Genetics, and Immunology
[8] Universidade de Vigo,undefined
来源
关键词
Single-cell DNA sequencing; Statistical phylogenetic models; Cell phylogeny reconstruction; Somatic variant calling; Finite-sites assumption; Acquisition bias correction;
D O I
暂无
中图分类号
学科分类号
摘要
We present SIEVE, a statistical method for the joint inference of somatic variants and cell phylogeny under the finite-sites assumption from single-cell DNA sequencing. SIEVE leverages raw read counts for all nucleotides and corrects the acquisition bias of branch lengths. In our simulations, SIEVE outperforms other methods in phylogenetic reconstruction and variant calling accuracy, especially in the inference of homozygous variants. Applying SIEVE to three datasets, one for triple-negative breast (TNBC), and two for colorectal cancer (CRC), we find that double mutant genotypes are rare in CRC but unexpectedly frequent in the TNBC samples.
引用
收藏
相关论文
共 50 条
  • [31] Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data
    Salem Malikic
    Katharina Jahn
    Jack Kuipers
    S. Cenk Sahinalp
    Niko Beerenwinkel
    Nature Communications, 10
  • [32] doubletD: detecting doublets in single-cell DNA sequencing data
    Weber, Leah L.
    Sashittal, Palash
    El-Kebir, Mohammed
    BIOINFORMATICS, 2021, 37 : I214 - I221
  • [33] Haplotype phasing in single-cell DNA-sequencing data
    Satas, Gryte
    Raphael, Benjamin J.
    BIOINFORMATICS, 2018, 34 (13) : 211 - 217
  • [34] Evaluation of single-cell classifiers for single-cell RNA sequencing data sets
    Zhao, Xinlei
    Wu, Shuang
    Fang, Nan
    Sun, Xiao
    Fan, Jue
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (05) : 1581 - 1595
  • [35] AMC: accurate mutation clustering from single-cell DNA sequencing data
    Yu, Zhenhua
    Du, Fang
    BIOINFORMATICS, 2022, 38 (06) : 1732 - 1734
  • [36] Single-Cell DNA Methylome Sequencing and Bioinformatic Inference of Epigenomic Cell-State Dynamics
    Farlik, Matthias
    Sheffield, Nathan C.
    Nuzzo, Angelo
    Datlinger, Paul
    Schoenegger, Andreas
    Klughammer, Johanna
    Bock, Christoph
    CELL REPORTS, 2015, 10 (08): : 1386 - 1397
  • [37] SPhyR: tumor phylogeny estimation from single-cell sequencing data under loss and error
    El-Kebir, Mohammed
    BIOINFORMATICS, 2018, 34 (17) : 671 - 679
  • [38] Sc-TUSV-Ext: Single-Cell Clonal Lineage Inference from Single Nucleotide Variants, Copy Number Alterations, and Structural Variants
    Bristy, Nishat Anjum
    Fu, Xuecong
    Schwartz, Russell
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2025,
  • [39] Joint gene network construction by single-cell RNA sequencing data
    Dong, Meichen
    He, Yiping
    Jiang, Yuchao
    Zou, Fei
    BIOMETRICS, 2023, 79 (02) : 915 - 925
  • [40] Inference of clonal selection in cancer populations using single-cell sequencing data
    Skums, Pavel
    Tsyvina, Viachaslau
    Zelikovsky, Alex
    BIOINFORMATICS, 2019, 35 (14) : I398 - I407