SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data

被引:0
|
作者
Senbai Kang
Nico Borgsmüller
Monica Valecha
Jack Kuipers
Joao M. Alves
Sonia Prado-López
Débora Chantada
Niko Beerenwinkel
David Posada
Ewa Szczurek
机构
[1] University of Warsaw,Faculty of Mathematics, Informatics and Mechanics
[2] ETH Zurich,Department of Biosystems Science and Engineering
[3] SIB Swiss Institute of Bioinformatics,CINBIO
[4] Universidade de Vigo,Galicia Sur Health Research Institute (IIS Galicia Sur)
[5] SERGAS-UVIGO,Institute of Solid State Electronics E362
[6] Technische Universität Wien,Department of Pathology
[7] Hospital Álvaro Cunqueiro,Department of Biochemistry, Genetics, and Immunology
[8] Universidade de Vigo,undefined
来源
关键词
Single-cell DNA sequencing; Statistical phylogenetic models; Cell phylogeny reconstruction; Somatic variant calling; Finite-sites assumption; Acquisition bias correction;
D O I
暂无
中图分类号
学科分类号
摘要
We present SIEVE, a statistical method for the joint inference of somatic variants and cell phylogeny under the finite-sites assumption from single-cell DNA sequencing. SIEVE leverages raw read counts for all nucleotides and corrects the acquisition bias of branch lengths. In our simulations, SIEVE outperforms other methods in phylogenetic reconstruction and variant calling accuracy, especially in the inference of homozygous variants. Applying SIEVE to three datasets, one for triple-negative breast (TNBC), and two for colorectal cancer (CRC), we find that double mutant genotypes are rare in CRC but unexpectedly frequent in the TNBC samples.
引用
收藏
相关论文
共 50 条
  • [1] SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data
    Kang, Senbai
    Borgsmueller, Nico
    Valecha, Monica
    Kuipers, Jack
    Alves, Joao M.
    Prado-Lopez, Sonia
    Chantada, Debora
    Beerenwinkel, Niko
    Posada, David
    Szczurek, Ewa
    GENOME BIOLOGY, 2022, 23 (01)
  • [2] Phylovar: toward scalable phylogeny-aware inference of single-nucleotide variations from single-cell DNA sequencing data
    Edrisi, Mohammadamin
    Valecha, Monica V.
    Chowdary, Sunkara B., V
    Robledo, Sergio
    Ogilvie, Huw A.
    Posada, David
    Zafar, Hamim
    Nakhleh, Luay
    BIOINFORMATICS, 2022, 38 (SUPPL 1) : 195 - 202
  • [3] Single-nucleotide variant calling in single-cell sequencing data with Monopogen
    Jinzhuang Dou
    Yukun Tan
    Kian Hong Kock
    Jun Wang
    Xuesen Cheng
    Le Min Tan
    Kyung Yeon Han
    Chung-Chau Hon
    Woong-Yang Park
    Jay W. Shin
    Haijing Jin
    Yujia Wang
    Han Chen
    Li Ding
    Shyam Prabhakar
    Nicholas Navin
    Rui Chen
    Ken Chen
    Nature Biotechnology, 2024, 42 : 803 - 812
  • [4] Single-nucleotide variant calling in single-cell sequencing data with Monopogen
    Dou, Jinzhuang
    Tan, Yukun
    Kock, Kian Hong
    Wang, Jun
    Cheng, Xuesen
    Tan, Le Min
    Han, Kyung Yeon
    Hon, Chung-Chau
    Park, Woong-Yang
    Shin, Jay W.
    Jin, Haijing
    Wang, Yujia
    Chen, Han
    Ding, Li
    Prabhakar, Shyam
    Navin, Nicholas
    Chen, Rui
    Chen, Ken
    NATURE BIOTECHNOLOGY, 2024, 42 (05) : 803 - +
  • [5] Joint inference of cell lineage and mitochondrial evolution from single-cell sequencing data
    Sashittal, Palash
    Chen, Viola
    Pasarkar, Amey
    Raphael, Benjamin J.
    BIOINFORMATICS, 2024, 40 : i218 - i227
  • [6] Phylovar: toward scalable phylogeny-aware inference of single-nucleotide variations from single-cell DNA sequencing data (vol 38, pg i195, 2022)
    Edrisi, Mohammadamin
    Valecha, Monica V.
    Chowdary, Sunkara B., V
    Robledo, Sergio
    Ogilvie, Huw A.
    Posada, David
    Zafar, Hamim
    Nakhleh, Luay
    BIOINFORMATICS, 2023, 39 (05)
  • [7] Detection of Single-Nucleotide Variants in Acute Myeloid Leukemia (AML) from Bulk and Single-Cell RNA Sequencing
    Valtierra-Gutierrez, I. A.
    Farre-Orteu, A.
    Richter, M.
    Greif, P. A.
    Ziegenhain, C.
    Jeremias, I.
    Metzeler, K.
    Spiekermann, K.
    Enard, W.
    Hellmann, I.
    ANNALS OF HEMATOLOGY, 2017, 96 : S57 - S57
  • [8] Systematic comparative analysis of single-nucleotide variant detection methods from single-cell RNA sequencing data
    Fenglin Liu
    Yuanyuan Zhang
    Lei Zhang
    Ziyi Li
    Qiao Fang
    Ranran Gao
    Zemin Zhang
    Genome Biology, 20
  • [9] Systematic comparative analysis of single-nucleotide variant detection methods from single-cell RNA sequencing data
    Liu, Fenglin
    Zhang, Yuanyuan
    Zhang, Lei
    Li, Ziyi
    Fang, Qiao
    Gao, Ranran
    Zhang, Zemin
    GENOME BIOLOGY, 2019, 20 (01)
  • [10] SIEVE: identifying robust single cell variable genes for single-cell RNA sequencing data
    Zhang, Yinan
    Xie, Xiaowei
    Wu, Peng
    Zhu, Ping
    BLOOD SCIENCE, 2021, 3 (02): : 35 - 39