Regularity estimates in Hölder spaces for Schrödinger operators via a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T1$$\end{document} theorem

被引:0
|
作者
Tao Ma
Pablo Raúl Stinga
José L. Torrea
Chao Zhang
机构
[1] Wuhan University,School of Mathematics and Statistics
[2] The University of Texas,Department of Mathematics
[3] Universidad Autónoma de Madrid,Departamento de Matemáticas
[4] ICMAT-CSIC-UAM-UCM-UC3M,undefined
关键词
Schrödinger operators; Regularity estimates; Campanato spaces; criterion; spaces; 35J10; 35B65; 26A33; 42B37; 46E35; 42B25;
D O I
10.1007/s10231-012-0291-9
中图分类号
学科分类号
摘要
We derive Hölder regularity estimates for operators associated with a time-independent Schrödinger operator of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +V$$\end{document}. The results are obtained by checking a certain condition on the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T1$$\end{document}. Our general method applies to get regularity estimates for maximal operators and square functions of the heat and Poisson semigroups, for Laplace transform type multipliers and also for Riesz transforms and negative powers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta +V)^{-\gamma /2}$$\end{document}, all of them in a unified way.
引用
收藏
页码:561 / 589
页数:28
相关论文
共 50 条