Superconvergent Pseudostress-Velocity Finite Element Methods for the Oseen Equations

被引:0
作者
Xi Chen
Yuwen Li
机构
[1] The Pennsylvania State University,Department of Engineering Science and Mechanics
[2] The Pennsylvania State University,Department of Mathematics
来源
Journal of Scientific Computing | 2022年 / 92卷
关键词
Pseudostress; Superconvergence; Supercloseness; Postprocessing; Oseen equation; Navier–Stokes equation; 65N12; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
We present a priori and superconvergence error estimates of mixed finite element methods for the pseudostress-velocity formulation of the Oseen equation. In particular, we derive superconvergence estimates for the velocity and a priori error estimates under unstructured grids, and obtain superconvergence results for the pseudostress under certain structured grids. A variety of numerical experiments validate the theoretical results and illustrate the effectiveness of the superconvergent recovery-based adaptive mesh refinement. It is also numerically shown that the proposed postprocessing yields apparent superconvergence in a benchmark problem for the incompressible Navier–Stokes equation.
引用
收藏
相关论文
共 50 条
  • [31] SUPERCONVERGENCE OF THE VELOCITY ALONG THE GAUSS LINES IN MIXED FINITE-ELEMENT METHODS
    EWING, RE
    LAZAROV, RD
    WANG, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) : 1015 - 1029
  • [32] Legendre superconvergent Galerkin-collocation type methods for Hammerstein equations
    Allouch, C.
    Sbibih, D.
    Tahrichi, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 353 : 253 - 264
  • [33] Superconvergent Recovery of Rectangular Edge Finite Element Approximation by Local Symmetry Projection
    Wu, Chao
    Huang, Yunqing
    Yi, Nianyu
    Yuan, Jinyun
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 1602 - 1629
  • [34] Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations II: HHO-Inspired Methods
    Gang Chen
    Bernardo Cockburn
    John R. Singler
    Yangwen Zhang
    Communications on Applied Mathematics and Computation, 2022, 4 : 477 - 499
  • [35] Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations II: HHO-Inspired Methods
    Chen, Gang
    Cockburn, Bernardo
    Singler, John R.
    Zhang, Yangwen
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (02) : 477 - 499
  • [36] Boundary penalty finite element methods for blending surfaces - II: Biharmonic equations
    Li, ZC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 110 (01) : 155 - 176
  • [37] Enhanced accuracy by post-processing for finite element methods for hyperbolic equations
    Cockburn, B
    Luskin, M
    Shu, CW
    Süli, E
    MATHEMATICS OF COMPUTATION, 2003, 72 (242) : 577 - 606
  • [38] The continuous Galerkin finite element methods for linear neutral delay differential equations
    Qin, Hongyu
    Zhang, Qifeng
    Wan, Shaohua
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 76 - 85
  • [39] Spectral approximated superconvergent methods for system of nonlinear Volterra Hammerstein integral equations
    Chakraborty, Samiran
    Agrawal, Shivam Kumar
    Nelakanti, Gnaneshwar
    CHAOS SOLITONS & FRACTALS, 2025, 192
  • [40] Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations I: An HDGk Method
    Chen, Gang
    Cockburn, Bernardo
    Singler, John
    Zhang, Yangwen
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 2188 - 2212