We present a priori and superconvergence error estimates of mixed finite element methods for the pseudostress-velocity formulation of the Oseen equation. In particular, we derive superconvergence estimates for the velocity and a priori error estimates under unstructured grids, and obtain superconvergence results for the pseudostress under certain structured grids. A variety of numerical experiments validate the theoretical results and illustrate the effectiveness of the superconvergent recovery-based adaptive mesh refinement. It is also numerically shown that the proposed postprocessing yields apparent superconvergence in a benchmark problem for the incompressible Navier–Stokes equation.
机构:
Univ Mohammed First, Team Modeling & Sci Comp, Multidisciplinary Fac Nador, Nador, MoroccoUniv Mohammed First, Team Modeling & Sci Comp, Multidisciplinary Fac Nador, Nador, Morocco
Allouch, C.
Sbibih, D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mohammed 1, LANO Lab, FSO, Oujda, MoroccoUniv Mohammed First, Team Modeling & Sci Comp, Multidisciplinary Fac Nador, Nador, Morocco
Sbibih, D.
Tahrichi, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mohammed 1, LANO Lab, FSO, Oujda, MoroccoUniv Mohammed First, Team Modeling & Sci Comp, Multidisciplinary Fac Nador, Nador, Morocco