Superconvergent Pseudostress-Velocity Finite Element Methods for the Oseen Equations

被引:0
作者
Xi Chen
Yuwen Li
机构
[1] The Pennsylvania State University,Department of Engineering Science and Mechanics
[2] The Pennsylvania State University,Department of Mathematics
来源
Journal of Scientific Computing | 2022年 / 92卷
关键词
Pseudostress; Superconvergence; Supercloseness; Postprocessing; Oseen equation; Navier–Stokes equation; 65N12; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
We present a priori and superconvergence error estimates of mixed finite element methods for the pseudostress-velocity formulation of the Oseen equation. In particular, we derive superconvergence estimates for the velocity and a priori error estimates under unstructured grids, and obtain superconvergence results for the pseudostress under certain structured grids. A variety of numerical experiments validate the theoretical results and illustrate the effectiveness of the superconvergent recovery-based adaptive mesh refinement. It is also numerically shown that the proposed postprocessing yields apparent superconvergence in a benchmark problem for the incompressible Navier–Stokes equation.
引用
收藏
相关论文
共 50 条
  • [1] Superconvergent Pseudostress-Velocity Finite Element Methods for the Oseen Equations
    Chen, Xi
    Li, Yuwen
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
  • [2] Error estimates of pseudostress-velocity MFEM for optimal control problems governed by stokes equations
    Chen, Yanping
    Leng, Haitao
    Yang, Wendi
    APPLIED NUMERICAL MATHEMATICS, 2019, 135 : 407 - 422
  • [3] Superconvergence analysis and two-grid algorithms of pseudostress-velocity MFEM for optimal control problems governed by Stokes equations
    Hou, Tianliang
    Leng, Haitao
    APPLIED NUMERICAL MATHEMATICS, 2019, 138 : 78 - 93
  • [4] Superconvergent recovery of edge finite element approximation for Maxwell's equations
    Wu, Chao
    Huang, Yunqing
    Yi, Nianyu
    Yuan, Jinyun
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 371
  • [5] Analysis of HDG Methods for Oseen Equations
    Aycil Cesmelioglu
    Bernardo Cockburn
    Ngoc Cuong Nguyen
    Jaume Peraire
    Journal of Scientific Computing, 2013, 55 : 392 - 431
  • [6] Analysis of HDG Methods for Oseen Equations
    Cesmelioglu, Aycil
    Cockburn, Bernardo
    Ngoc Cuong Nguyen
    Peraire, Jaume
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (02) : 392 - 431
  • [7] Stabilized finite element methods with anisotropic mesh refinement for the Oseen problem
    Apel, Thomas
    Knopp, Tobias
    Lube, Gert
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (12) : 1830 - 1843
  • [8] STABILISED FINITE ELEMENT METHODS FOR THE OSEEN PROBLEM ON ANISOTROPIC QUADRILATERAL MESHES
    Barrenechea, Gabriel R.
    Wachtel, Andreas
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2018, 52 (01) : 99 - 122
  • [9] A superconvergent nonconforming mixed finite element method for the Navier-Stokes equations
    Ren, Jincheng
    Ma, Yue
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 646 - 660
  • [10] An anisotropic, superconvergent nonconforming plate finite element
    Chen, Shaochun
    Yin, Li
    Mao, Shipeng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) : 96 - 110