Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet

被引:0
作者
Lucas Caretta
Maxwell Mann
Felix Büttner
Kohei Ueda
Bastian Pfau
Christian M. Günther
Piet Hessing
Alexandra Churikova
Christopher Klose
Michael Schneider
Dieter Engel
Colin Marcus
David Bono
Kai Bagschik
Stefan Eisebitt
Geoffrey S. D. Beach
机构
[1] Massachusetts Institute of Technology,Department of Materials Science and Engineering
[2] Max-Born-Institut,Institut für Optik und Atomare Physik
[3] Technische Universität Berlin,undefined
[4] Deutsches Elektronen-Synchrotron (DESY),undefined
[5] FS-PE,undefined
来源
Nature Nanotechnology | 2018年 / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Spintronics is a research field that aims to understand and control spins on the nanoscale and should enable next-generation data storage and manipulation. One technological and scientific key challenge is to stabilize small spin textures and to move them efficiently with high velocities. For a long time, research focused on ferromagnetic materials, but ferromagnets show fundamental limits for speed and size. Here, we circumvent these limits using compensated ferrimagnets. Using ferrimagnetic Pt/Gd44Co56/TaOx films with a sizeable Dzyaloshinskii–Moriya interaction, we realize a current-driven domain wall motion with a speed of 1.3 km s–1 near the angular momentum compensation temperature (TA) and room-temperature-stable skyrmions with minimum diameters close to 10 nm near the magnetic compensation temperature (TM). Both the size and dynamics of the ferrimagnet are in excellent agreement with a simplified effective ferromagnet theory. Our work shows that high-speed, high-density spintronics devices based on current-driven spin textures can be realized using materials in which TA and TM are close together.
引用
收藏
页码:1154 / 1160
页数:6
相关论文
共 50 条
[41]   Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect [J].
Liang, Dong ;
DeGrave, John P. ;
Stolt, Matthew J. ;
Tokura, Yoshinori ;
Jin, Song .
NATURE COMMUNICATIONS, 2015, 6
[42]   Effect of Dzyaloshinskii-Moriya Interaction Energy Confinement on Current-Driven Dynamics of Skyrmions [J].
Bhatti, Sabpreet ;
Piramanayagam, S. N. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2019, 13 (11)
[43]   Current-driven domain wall motion in artificial magnetic domain structures [J].
M. Hari ;
K. Wang ;
S. J. Bending ;
E. Arac ;
D. Atkinson ;
S. Lepadatu ;
J. S. Claydon ;
C. H. Marrows .
Journal of the Korean Physical Society, 2013, 62 :1534-1538
[44]   Current-driven domain wall motion in artificial magnetic domain structures [J].
Hari, M. ;
Wang, K. ;
Bending, S. J. ;
Arac, E. ;
Atkinson, D. ;
Lepadatu, S. ;
Claydon, J. S. ;
Marrows, C. H. .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2013, 62 (10) :1534-1538
[45]   Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films [J].
Woo, Seonghoon ;
Song, Kyung Mee ;
Zhang, Xichao ;
Zhou, Yan ;
Ezawa, Motohiko ;
Liu, Xiaoxi ;
Finizio, S. ;
Raabe, J. ;
Lee, Nyun Jong ;
Kim, Sang-Il ;
Park, Seung-Young ;
Kim, Younghak ;
Kim, Jae-Young ;
Lee, Dongjoon ;
Lee, OukJae ;
Choi, Jun Woo ;
Min, Byoung-Chul ;
Koo, Hyun Cheol ;
Chang, Joonyeon .
NATURE COMMUNICATIONS, 2018, 9
[46]   Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect [J].
Dong Liang ;
John P. DeGrave ;
Matthew J. Stolt ;
Yoshinori Tokura ;
Song Jin .
Nature Communications, 6
[47]   Current-driven vortex domain wall dynamics by micromagnetic simulations [J].
He, J ;
Li, Z ;
Zhang, S .
PHYSICAL REVIEW B, 2006, 73 (18)
[48]   Effect of Joule heating in current-driven domain wall motion [J].
Yamaguchi, A ;
Nasu, S ;
Tanigawa, H ;
Ono, T ;
Miyake, K ;
Mibu, K ;
Shinjo, T .
APPLIED PHYSICS LETTERS, 2005, 86 (01) :012511-1
[49]   Thermally assisted current-driven domain-wall motion [J].
Duine, R. A. ;
Nunez, A. S. ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 98 (05)
[50]   Current-driven domain wall motion enhanced by the microwave field [J].
Wang, Xi-guang ;
Guo, Guang-hua ;
Nie, Yao-zhuang ;
Wang, Dao-wei ;
Zeng, Zhong-ming ;
Li, Zhi-xiong ;
Tang, Wei .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (02)