Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet

被引:0
作者
Lucas Caretta
Maxwell Mann
Felix Büttner
Kohei Ueda
Bastian Pfau
Christian M. Günther
Piet Hessing
Alexandra Churikova
Christopher Klose
Michael Schneider
Dieter Engel
Colin Marcus
David Bono
Kai Bagschik
Stefan Eisebitt
Geoffrey S. D. Beach
机构
[1] Massachusetts Institute of Technology,Department of Materials Science and Engineering
[2] Max-Born-Institut,Institut für Optik und Atomare Physik
[3] Technische Universität Berlin,undefined
[4] Deutsches Elektronen-Synchrotron (DESY),undefined
[5] FS-PE,undefined
来源
Nature Nanotechnology | 2018年 / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Spintronics is a research field that aims to understand and control spins on the nanoscale and should enable next-generation data storage and manipulation. One technological and scientific key challenge is to stabilize small spin textures and to move them efficiently with high velocities. For a long time, research focused on ferromagnetic materials, but ferromagnets show fundamental limits for speed and size. Here, we circumvent these limits using compensated ferrimagnets. Using ferrimagnetic Pt/Gd44Co56/TaOx films with a sizeable Dzyaloshinskii–Moriya interaction, we realize a current-driven domain wall motion with a speed of 1.3 km s–1 near the angular momentum compensation temperature (TA) and room-temperature-stable skyrmions with minimum diameters close to 10 nm near the magnetic compensation temperature (TM). Both the size and dynamics of the ferrimagnet are in excellent agreement with a simplified effective ferromagnet theory. Our work shows that high-speed, high-density spintronics devices based on current-driven spin textures can be realized using materials in which TA and TM are close together.
引用
收藏
页码:1154 / 1160
页数:6
相关论文
共 50 条
[31]   Microscopic approach to current-driven domain wall dynamics [J].
Tatara, Gen ;
Kohno, Hiroshi ;
Shibata, Junya .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 468 (06) :213-301
[32]   Microscopic theory of current-driven domain wall motion [J].
Tatara, G ;
Kohno, H .
JOURNAL OF ELECTRON MICROSCOPY, 2005, 54 :I69-I74
[33]   Current-driven domain wall motion in cylindrical nanowires [J].
Wieser, R. ;
Vedmedenko, E. Y. ;
Weinberger, P. ;
Wiesendanger, R. .
PHYSICAL REVIEW B, 2010, 82 (14)
[34]   A fast current-driven instability in relativistic collisionless shocks [J].
Lemoine, Martin ;
Pelletier, Guy ;
Gremillet, Laurent ;
Plotnikov, Illya .
EPL, 2014, 106 (05)
[35]   Micromagnetic simulation of current-driven domain wall propagation [J].
Csaba, G. ;
Lugli, P. ;
Ji, L. ;
Porod, W. .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2007, 6 (1-3) :121-124
[36]   Current-driven magnetic domain-wall logic [J].
Luo, Zhaochu ;
Hrabec, Ales ;
Dao, Trong Phuong ;
Sala, Giacomo ;
Finizio, Simone ;
Feng, Junxiao ;
Mayr, Sina ;
Raabe, Joerg ;
Gambardella, Pietro ;
Heyderman, Laura J. .
NATURE, 2020, 579 (7798) :214-+
[37]   Current-driven magnetic domain-wall logic [J].
Zhaochu Luo ;
Aleš Hrabec ;
Trong Phuong Dao ;
Giacomo Sala ;
Simone Finizio ;
Junxiao Feng ;
Sina Mayr ;
Jörg Raabe ;
Pietro Gambardella ;
Laura J. Heyderman .
Nature, 2020, 579 :214-218
[38]   Current-driven domain wall motion in ferrimagnetic nanowires [J].
Jing, K. Y. ;
Sun, Zhou-Zhou ;
Wang, X. R. .
PHYSICAL REVIEW B, 2024, 110 (05)
[39]   Micromagnetic simulation of current-driven domain wall propagation [J].
G. Csaba ;
P. Lugli ;
L. Ji ;
W. Porod .
Journal of Computational Electronics, 2007, 6 :121-124
[40]   Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films [J].
Seonghoon Woo ;
Kyung Mee Song ;
Xichao Zhang ;
Yan Zhou ;
Motohiko Ezawa ;
Xiaoxi Liu ;
S. Finizio ;
J. Raabe ;
Nyun Jong Lee ;
Sang-Il Kim ;
Seung-Young Park ;
Younghak Kim ;
Jae-Young Kim ;
Dongjoon Lee ;
OukJae Lee ;
Jun Woo Choi ;
Byoung-Chul Min ;
Hyun Cheol Koo ;
Joonyeon Chang .
Nature Communications, 9