“Principle of Indistinguishability” and Equations of Motion for Particles with Spin

被引:0
|
作者
Mauro Napsuciale
机构
[1] Universidad de Guanajuato,Instituto de Física
来源
Foundations of Physics | 2003年 / 33卷
关键词
Irreducible Representation; Order Equation; Lorentz Group; Homogeneous Lorentz Group; Weinberg Equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we review the derivation of Dirac and Weinberg equations based on a “principle of indistinguishability” for the (j,0) and (0,j) irreducible representations (irreps) of the homogeneous Lorentz group (HLG). We generalize this principle and explore its consequences for other irreps containing j≥1. We rederive Ahluwalia–Kirchbach equation using this principle and conclude that it yields \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{O}(p^{2j} )$$ \end{document} equations of motion for any representation containing spin j and lower spins. We also use the obtained generators of the HLG for a given representation to explore the possibility of the existence of first order equations for that representation. We show that, except for j=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \frac{1}{2}$$ \end{document}, there exists no Dirac-like equation for the (j,0)⊕(0,j) representation nor for the (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \frac{1}{2}$$ \end{document},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \frac{1}{2}$$ \end{document}) representation. We rederive Kemmer–Duffin–Petieau (KDP) equation for the (1,0)⊕(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \frac{1}{2}$$ \end{document},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \frac{1}{2}$$ \end{document})⊕(0,1) representation by this method and show that the (1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \frac{1}{2}$$ \end{document})⊕(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \frac{1}{2}$$ \end{document},1) representation satisfies a Dirac-like equation which describes a multiplet of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$j = \frac{3}{2}{\text{ and }}j = \frac{1}{2}$$ \end{document} with masses m and m/2, respectively.
引用
收藏
页码:741 / 768
页数:27
相关论文
共 50 条