Jackson’s theorem in Qp spaces

被引:0
作者
YingWei Chen
GuangBin Ren
机构
[1] University of Science and Technology of China,Department of Mathematics
[2] University of Aveiro,Department of Mathematics
来源
Science China Mathematics | 2010年 / 53卷
关键词
space; BMOA; polynomial approximation; 41A17; 32A36;
D O I
暂无
中图分类号
学科分类号
摘要
A Jackson type inequality in Qp spaces is established, i.e., for any f(z) = Σj=0∞ajzj ∈ Qp, 0 ⩽ p < ∞, a > 1, and k − 1 ∈ ℕ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\| {f(z) - \frac{{\Gamma (k)}} {{\Gamma (k + a)}}\sum\limits_{j = 0}^{k - 1} {\frac{{\Gamma (k - j + a)}} {{\Gamma (k - j)}}a_j z^j } } \right\|_{Q_p } \leqslant C(a)\omega \left( {\frac{1} {k},f,Q_p } \right), $$\end{document} where ω(1/k, f, Qp) is the modulus of continuity in Qp spaces and C(a) is an absolute constant depending only on the parameter a.
引用
收藏
页码:367 / 372
页数:5
相关论文
共 17 条
[1]  
Andrievskii V.(1997)Harmonic version of Jackson’s theorem in the complex plane J Approx Theory 90 224-234
[2]  
Aulaskari R.(1995)On subspaces and subsets of BMOA and UBC Analysis 15 101-121
[3]  
Xiao J.(1987)Jackson theorems in Hardy spaces and approximation by Riesz means J Approx Theory 49 240-251
[4]  
Zhao R.(1912)On approximation by trigonometrical sums and polynomials Trans Amer Math Soc 13 491-515
[5]  
Colzani L.(1961)On function of bouned mean oscillation Comm Pure Appl Math 14 415-426
[6]  
Jackson D.(2002)-moduli of continuity in J Approx Theory 115 238-259
[7]  
John F.(2005)( J Approx Theory 134 175-198
[8]  
Nirenberg L.(1981)), Math USSR Izv 17 203-217
[9]  
Kryakin Y.(1969) > 0, and an inequality of Hardy and Littlewood Trans Amer Math Soc 138 61-69
[10]  
Trebels W.(2007)Holomorphic Jackson’s theorems in polydiscs Acta Math Sin Engl Ser 23 1391-1404